![经济数学—概率论与数理统计学习辅导(高等学校经济管理数学基础辅导系列)](https://wfqqreader-1252317822.image.myqcloud.com/cover/400/23912400/b_23912400.jpg)
三、习题解答
(A)
1.已知随机变量X服从0-1分布,并且P{X≤0}=0.2,求X的概率分布.
解 X只取0与1两个值,P{X=0}=P{X≤0}-P{X<0}=0.2, P{X=1}=1-P{X=0}=0.8.
2.一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X的概率分布.
解 X可以取0,1,2三个值.由古典概型概率公式可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0003.jpg?sign=1739288800-mgJEBgrRXLOeabfTNkqaXX1EOjcYuY4Z-0-0935e6a5b214f43af7704037fcb3ac26)
依次计算得X的概率分布如下表所示:
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0004.jpg?sign=1739288800-VSHkQYPMJcdFbOLw5p1t0vI0QwwaY8Lg-0-677d6ff8d3d8765d571bd3d89f6ae825)
3.上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X件,求随机变量X的概率分布.
解 X的取值仍是0,1,2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0005.jpg?sign=1739288800-CoaIw1gBvhyLKvDRl1hfUcamZe2EJloN-0-465c25ae413b4d1590d466ce3979e3a1)
4.第2题中若改为重复抽取,每次一件,直到取到优质品为止,求抽取次数X的概率分布.
解 X可以取1,2, …可列个值.且事件{X=m}表示抽取m次前m-1次均未取到优质品且第m次取到优质品,其概率为.因此X的概率分布为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0007.jpg?sign=1739288800-4q98XGYD7sro8eu3kEvTocNcdLj3zfym-0-93ab3cffaaf982c0104d0251a2261ae4)
5.盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布:
(1)抽取次数X;
(2)取到的旧球个数Y.
解 (1)X可以取1,2,3,4各值,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0001.jpg?sign=1739288800-JI4o82Zcs1gHrkyXOxf4SQBnB6tyAsHs-0-222b3e7ee5b98d033a51098535dc3b16)
(2)Y可以取0,1,2,3各值.
P{Y=0}=P{X=1}=0.75,
P{Y=1}=P{X=2}≈0.2045,
P{Y=2}=P{X=3}≈0.0409,
P{Y=3}=P{X=4}≈0.0045.
6.上题盒中球的组成不变,若一次取出3个,求取到的新球数目X的概率分布.
解 X可以取0,1,2,3各值,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0002.jpg?sign=1739288800-FJEP2i10DNCgxpcj7TH1dP71FHzsCfDf-0-8dbae283709bc431f7f4c272dffbde26)
7.将3人随机地分配到5个房间去住,求第一个房间中人数的概率分布和分布函数.
解 用X表示第一个房间中的人数,则其可能的取值为0,1,2,3.分别算得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0064_0003.jpg?sign=1739288800-6RNbhZoqiC6ciPfuB9P5NDcj3XwS5AKi-0-1eefbec4f3b6b84b60a992484bc82165)
故X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0001.jpg?sign=1739288800-oeoOxpR3gKomIIbP0dyANm8pv7USyu7R-0-13c3a05f1dd3bc44385d653b84fa0ac7)
8.袋中装有n个球,分别编号为1,2, …, n,从中任取k(k≤n)个,求取出的k个球最大编号的概率分布.
解 用X表示k个球的最大编号,则X可能的取值为k, k+1, …, n.考虑随机事件{X=l},总样本点数为,若k个球的最大编号是l,编号是l的球一定被取出,剩下k-1个球从编号为1,2, …, l-1的l-1个球中取,共
种取法,所以随机事件{X=l}所包含的样本点数为
,由古典概型概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0005.jpg?sign=1739288800-i9zwBSKSXVflqX9EmzBgexeG81YAQQGo-0-038f8e9d4b8f269dcd89db738cb3e6a2)
9.已知P{X=n}=pn, n=2,4,6, …,求p的值.
解 由题意可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0006.jpg?sign=1739288800-EUrUs3PcgOapLVcF09Rz9X9bS2Bq9Dod-0-448c930ae554584eddc098bcd8b7c583)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0007.jpg?sign=1739288800-FUllx6ue7cHWcTnSJrkVieHYK7lW3csd-0-895329751c3c3fbc638babfd57a8ed34)
10.已知P{X=n}=cn, n=1,2, …,100,求c的值.
解 由题意可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0008.jpg?sign=1739288800-0lBUQUQVUrQUvgms0MyfNGwEycTIWye5-0-63c475eefdc1d7577b5e9f5a995fc4e2)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0009.jpg?sign=1739288800-lVubXGaANF6Y6hDQpUbWbGSJwBBS7cm2-0-064da4e23d1c5e378be01bc8a7da60cd)
11.已知 , …,且λ>0,求常数c.
解 由题意知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0011.jpg?sign=1739288800-wyPYCCV3MYpemGzsOj3FfASwrJEGmOLE-0-08887f35db112c402ec312c30978bc5a)
由于
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0012.jpg?sign=1739288800-gS5lx79QRdAUMVsk6onj17WsfMKb4tg7-0-17153b8f4ca114ae7c9852a5a09024f7)
所以有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0013.jpg?sign=1739288800-UAauiXSFM0hTbInwOEl4P4upFA9yovOS-0-76b15178bfd2c3fa558759e1cc2517fd)
解得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0065_0014.jpg?sign=1739288800-nsP0hGazPKCQ5EWcIpoHfN4FTYPSL6Hg-0-c4a09a6d1da731fc92606b3cef255756)
12.某人任意抛硬币10次,写出出现正面次数的概率分布,并求出现正面次数不小于3及不超过8的概率.
解 用X表示抛10次出现正面的次数,则X可能的取值为0,1,2, …,10.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0001.jpg?sign=1739288800-1LhBXIjdK692ibk9isBhJUmeG4px3GM6-0-1031b35f567605a34f57dcc457a2b0de)
13.甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求:
(1)二人投篮总次数Z的概率分布;
(2)甲投篮次数X的概率分布;
(3)乙投篮次数Y的概率分布.
解 设事件Ai(i=1,3,5, …)表示“在第i次投篮中甲投中”, Bj(j=2,4,6, …)表示“在第j次投篮中乙投中”,且A1, B2, A3, B4, …相互独立.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0002.jpg?sign=1739288800-HILv0e5Jl9lQyBNwsHdSCAhkkdDX63m8-0-5d1a6483d921669fe9f0f5ff2951b9af)
14.一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X的概率分布(不计其他因素停车).
解 X可以取0,1,2,3,4,分别得到
P{X=0}=0.4, P{X=1}=0.6 × 0.4=0.24,
P{X=2}=0.6 2 × 0.4=0.144,
P{X=3}=0.6 3 × 0.4=0.0864,
P{X=4}=0.6 4=0.1296.
15.已知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0066_0003.jpg?sign=1739288800-0Z0efmvdwsA7YbAluS2TC8feV2NNAnd8-0-4de3998564ba9e32c9784419e8f25331)
问f(x)是否为密度函数.若是,确定a的值;若不是,说明理由.
解 如果f(x)是密度函数,则f(x)≥0,因此a≥0,但是,当a≥0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0001.jpg?sign=1739288800-oUyPa0XPMaPuw1a2lcTTljb1dUpi0IKm-0-c16f6b99a01998d587edf05a84fb0487)
由于不等于1,因此f(x)不是密度函数.
16.某种电子元件的寿命X是随机变量,概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0003.jpg?sign=1739288800-pImEL0PFIvCwdWKUkaCDeouDkdtyRUXw-0-be0f0f9445baa00e1b65bdc8aca7dc69)
3个这种元件串联在一个线路上,计算这3个元件使用了150h后仍能使线路正常工作的概率.
解 串联线路正常工作的充分必要条件是3个元件都能正常工作.而3个元件的寿命是3个相互独立同分布的随机变量,因此若用事件A表示“线路正常工作”,则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0004.jpg?sign=1739288800-aQjURDv1mxxpVXRTTffBeFhsVOqMB7P4-0-ce39ddd7bc1c35a71e40f832390cbe51)
17.设随机变量X~f(x), f(x)=Ae-|x|.试确定系数A并计算P{|X|≤1}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0005.jpg?sign=1739288800-52IJFZzhA8Q2lSUUfcP6gdRonOnOpvQ4-0-94885dcd0e93bb4f02b0f2c304effcee)
解得,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0007.jpg?sign=1739288800-Aw9Do4cZZKwmvH9ioYdKv837nVE70kQW-0-5fb80b0735f3a42c798ae9abde4f3707)
18.设X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0008.jpg?sign=1739288800-5gGj7gCeLfKOjJ7n4nPzyQ1M9bknrEbQ-0-18a0b6203b3cf68eaaa8a2b4ee14192a)
(1)确定常数c;(2)计算; (3)写出分布函数.
解(1)解得
.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0067_0011.jpg?sign=1739288800-zFUlKnB9ULwle8G6cjL5Dvb0H3vj5AP3-0-f615a607e90b129fcfd6493a09242fc9)
(3)当x≤-1时,F(x)=0;当x≥1时,F(x)=1;当-1<x<1时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0001.jpg?sign=1739288800-impoVsO41oMHLlFj0qJDGDIJAo43TRIh-0-6adb6db4b81902972ed621edce7722e9)
19.设X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0002.jpg?sign=1739288800-e3sseXaNJwI1J0piZ8yjtSKnMZVPJQeJ-0-adf4149541259f092cb1597cbbc0a987)
(1)确定常数c;(2)计算; (3)写出分布函数.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0004.jpg?sign=1739288800-JgvyYmUHF4ktXnvC1N43OYUAgWb2ruj8-0-85e1ab4620efae359a0be1ae065bbf53)
故c=1π.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0005.jpg?sign=1739288800-em6Wf1xKg4Y484fUrOdAKQLVFRrNdDeY-0-42de5855ff3527ebc778d18e62010a61)
(3)当x≤-1时,F(x)=0;当x≥1时,F(x)=1;当-1<x<1时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0006.jpg?sign=1739288800-PAuIX2rwsiPqqAhEKPVYv96rC1AvQqSr-0-3835ae60d6e56693c81644aab2aae331)
20.设连续型随机变量X的分布函数F(x)为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0007.jpg?sign=1739288800-vYWO0n4w5J2WulF9YAIYRAVK0Vh415uo-0-d3ee8c4ca4470e9113804679f516e9a1)
(1)确定系数A; (2)计算P{0≤X≤0.25}; (3)求概率密度f(x).
解(1)连续型随机变量X的分布函数是连续函数,F(1)=F(1-0),则有A=1.
(2)P{0≤X≤0.25}=F(0.25)-F(0)=0.5.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0008.jpg?sign=1739288800-FHCJv1UCWzrC4PFJK2uCUqwPIG9sDOqT-0-96540cebc611101cb8a268b7ddf641d3)
21.随机变量X的分布函数F(x)为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0068_0009.jpg?sign=1739288800-x5dlwmckftWnLPdaRR8iIpda0bP6KPXv-0-427c465f2f95bfbeb3c3dd0e341f61fd)
试确定常数A的值并计算P{0≤X≤4}.
解 由F(2+0)=F(2),可得,故A=4,且
P{0≤X≤4}=P{0<X≤4}=F(4)-F(0)=0.75.
22.设X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0001.jpg?sign=1739288800-iB4okS8LJmyCXJxiHBT4iCD5K5cLajRp-0-7834b00e3063447979cbbf9814b409dc)
(1)确定常数A; (2)计算P{|X|<2}; (3)求概率密度f(x).
解 (1)由F(0+0)=F(0),可得0=A-1,故A=1.
(2)P{|X|<2}=F(2)-F(-2)=1-e-4.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0002.jpg?sign=1739288800-IvZO9KmJTxEClwiCm5JgY2sz54b0XJHv-0-29b3faa958da5b4e485d18a74b7ddd90)
23.设X的分布函数为
F(x)=A+Barcta nx, -∞ <x<+∞.
(1)确定常数A, B; (2)计算P{|X|<1}; (3)求概率密度f(x).
解 (1) ,可得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0004.jpg?sign=1739288800-3jdeGr3n7cg7ohnA7B7jIFowKBip5dWX-0-965f9a7f25dc4f4d64d0882c677a0ff1)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0005.jpg?sign=1739288800-jfnOXJD6Vv2E5IRWIvFY2hcMDSArWqi6-0-e7db06e3a526481201de4277066342c7)
24.设X的概率密度为
f(x)=Ae-|x|, -∞<x<+∞.
(1)确定常数A; (2)求分布函数f(x); (3)计算X落在(0,1)内的概率.
解 (1)由第17题,有.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0007.jpg?sign=1739288800-bjnFEdmZjPY78ecL71helsmZzk1KFLcd-0-69d7938b590bde0b4d03b7ecb6e502fb)
(3)当x<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0008.jpg?sign=1739288800-s4cwEP5Vm7KV7ZfgtjWKcLUX6X3WXwBs-0-e05c90aea33c70e70cd7d138b9043ebc)
当x≥0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0009.jpg?sign=1739288800-sKzLaAMMvnWmToCgAJz1k59hht91cwfT-0-ff8d61d329b2d9d1fa23487f9865dc7c)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0069_0010.jpg?sign=1739288800-IiGIUO9jDpSGn3nbcfrnczRNy0i9FDo2-0-fe1f1bf903f72754fb1ad6cd9b7d947d)
25.随机变量 ,试确定A的值并求分布函数F(x).
解 ,因此
,所求分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0002.jpg?sign=1739288800-GgsVReG5HHTCyEk8dhXDvghUSwW9jYjc-0-9d6277720365d4c58096291932e6c513)
26.随机变量X~f(x),其中
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0003.jpg?sign=1739288800-oZrFbV23HaIQMK5AUJRXSoa8DQnVT0cv-0-be66b5a952ab040422182b756a3877ec)
试确定a的值并求分布函数F(x).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0004.jpg?sign=1739288800-lnMeJkUVZ2lVIRlFbCS1F3zvz4q1Byra-0-3449936945f97553bd39ae30bd0b213d)
因此a=π.当0<x<π时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0005.jpg?sign=1739288800-aHuK8ZUZPRoJSp3WzteLo2TCotaFUA8f-0-00b78730d0f783f3247e0780a60c82e1)
27.随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0006.jpg?sign=1739288800-seVFys8Z1a4NHQUWRb2hjyScK27PoNAD-0-7d939dfbef8c07e890ad78eef0edb49e)
求X的概率密度,并计算
解 当x≤0时,X的概率密度为f(x)=0;当x>0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0008.jpg?sign=1739288800-LebTF1EDVluM8iqEi1G6GD4QvTcSHfYd-0-8a0281193fd9978fa3e39db3eb4f5823)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0009.jpg?sign=1739288800-VQiYayTYFcspdxswCUxYWOfznmnuyZee-0-f15aa36d444570943d6239415494ae93)
28.某公共汽车站,每隔8分钟有一辆汽车通过,乘客到达汽车站的任一时刻是等可能的,求乘客到达汽车站后候车时间不超过3分钟及至少5分钟的概率.
解 用X表示乘客到达汽车站后候车时间,则X~U(0,8).X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0070_0010.jpg?sign=1739288800-5ZDtvsuVnVx7id1OEkC52tYmeBodpLas-0-0a7f36d2dd85ff2f1555a940d5c958e5)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0001.jpg?sign=1739288800-CfaUXWYytCZSsTqJNsoXLaN2pC3U38CD-0-e4acc5e1937e7f066859837e921b64a3)
29.设ξ~U(0,10),求方程x 2+ξx+1=0有实根的概率.
解 ξ的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0002.jpg?sign=1739288800-QyGDZtvKmIS8paeokbbUEjJH45I5W5Br-0-fabd943a424c964de5b48c455818541e)
方程x2+ξx+1=0当ξ2-4≥0时有实根,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0003.jpg?sign=1739288800-vHlIl87Da4Bebgu5VZZO0xfaViHWHH1P-0-23169da1ce24dcc5c93a76590ac64806)
30.一批产品中有15%的次品,逐个进行返样抽取检查,共抽取20个样品,问取出的20个样品中最可能有几个次品,并求相应的概率.
解 用X表示抽取20个样品中的次品的件数,由于(20+1)×0.15=3,则取出的20个样品中最可能有3个次品,且
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0004.jpg?sign=1739288800-MccSiyte1m92BBoCkXBZ5KiT3xrvblCN-0-f8cbcc34778baff78fb8e8f1f8e30b12)
31.在1000件产品中含有15件次品,现从中任取6件产品,分别求其中恰含有2件次品和不含次品的概率.
解 用X表示抽取的6件产品中次品的件数,次品率为0.015,故X近似地服从二项分布B(6,0.015),
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0005.jpg?sign=1739288800-fkj1vCUTMa17vuQVXI8LwDtbfid4d3py-0-4ea0fa12c1ee80d434394b489ef9ed9c)
32.电话交换台每分钟接到呼唤的次数服从泊松分布P(3),求一分钟内接到4次呼唤、不超过5次呼唤和至少3次呼唤的概率.
解 用X表示每分钟接到的呼唤次数,则X服从泊松分布P(3),即有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0006.jpg?sign=1739288800-4R85tc0SY8P7OgTpXcOi9dfkNWe21Qdv-0-74f0e70594c4e12078ab41e7400f58ca)
查表得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0007.jpg?sign=1739288800-3hH5lvHh5xXHl7zQaUAaLrs1zUZquV7Y-0-b74eb19b8b8739c88f723d54dc24b691)
33.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有1个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.
解 设一页书上印刷错误为X,4页中没有错误的页数为Y,依题意有
P{X=1}=P{X=2},
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0071_0008.jpg?sign=1739288800-dVL4CqdPti5Nc6AkpbtTuNxzgTdsPxL9-0-7625b85a91b27dc423616626d75a7820)
解得λ=2,即X服从λ=2的泊松分布.
每页上没有印刷错误的概述是
p=P{X=0}=e-2,
显然Y~B(4, e-2),故
P{Y=4}=p4=e-8.
34.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有1只老鼠的概率为有2只老鼠的概率的2倍,求粮仓内无鼠的概率.
解 设X为粮仓内老鼠数目,依题意有
P{X=1}=2P{X=2},
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0072_0001.jpg?sign=1739288800-HbnH3OksyDi8NOs0yVeWHRq2B9CzTwGD-0-890244afc0d1cda27dbc5ca34f67441c)
解得λ=1, P{X=0}=e-1.
35.上题中条件不变,求10个粮仓内有老鼠的粮仓不超过2个的概率.
解 接上题,设10个粮仓中有老鼠的粮仓的数目为Y,则Y~B(10, p),其中
p=P{X>0}=1-P{X=0}=1-e-1, q=e-1.
P{Y≤2}=P{Y=0}+P{Y=1}+P{Y=2}=e-8(36e-2-80e-1+45).
36.随机变量X服从参数为0.7的0-1分布,求X2, X2-2X的概率分布.
解 X2仍服从0-1分布,且
P{X2=0}=P{X=0}=0.3,
P{X2=1}=P{X=1}=0.7.
X2-2X的取值为-1与0,则
P{X2-2X=0}=P{X=0}=0.3,
P{X2-2X=-1}=1-P{X=0}=0.7.
37.设X的概率分布为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0072_0002.jpg?sign=1739288800-yU5ik1lAnjwWHYIfIkughx5oegKKEUhO-0-0bc93dac51717dedb94c52efa29c7f79)
求3X+2和2X2-1的概率分布.
解 P{3X+2=-1}=P{X=-1}=0.1,
P{3X+2=2}=P{X=0}=0.2,
P{3X+2=5}=P{X=1}=0.3,
P{3X+2=17}=P{X=5}=0.4.
P{2X2-1=1}=P{X=-1}+P{X=1}=0.4,
P{2X2-1=-1}=P{X=0}=0.2,
P{2X2-1=49}=P{X=5}=0.4.
38.从含有3件次品的12件产品中任取3件,设其中次品数为X,求2X+1的概率分布.
解 X可能的取值为0,1,2,3,则有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0001.jpg?sign=1739288800-rDdRYqYsf9N0qpWezRX9JoO29YKXnGg7-0-1e22a6cdd84ff295c3c31cee37735d25)
39.已知 , Y=lgX,求Y的概率分布.
解 Y的取值为±1, ±2, …,则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0003.jpg?sign=1739288800-JoOx75XQ30XwbxIFUeEYZzdOcoQA0XP1-0-c6ca0129c486d3d5d1fa24bc1b3cb0b6)
40.X服从[a, b]上的均匀分布,Y=aX+b, (a≠0),求证Y也服从均匀分布.
证明 X的密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0004.jpg?sign=1739288800-mR37SK7MOoSQlDUv0XO5S6NJBvKdyFQO-0-cd1f1d53e73cb6a8695de3ed679b4e0f)
Y的密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0005.jpg?sign=1739288800-lYMqDepBznLnmUnIyH9GzvHScYXKIqYO-0-124e5b9a9ea6363aaf49bb496fa8532d)
当a>0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0006.jpg?sign=1739288800-vLq7Rxsr0WgHThAkHAFCHu4hDk9OjZkx-0-0478513c2f3f32fbf97c71d4d6fa07a3)
当a<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0007.jpg?sign=1739288800-UOXrYVF0nI8BMYbHBCbiQDhELBvqPZ3a-0-2e50c7b37e44b0da6f3cbb89fcdf520b)
41.随机变量服从 上的均匀分布,Y=cosX,求Y的概率密度.
解 显然y=cosx在 上单调,在(0,1)上有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0010.jpg?sign=1739288800-lNUVxQIBXtD9QoZLOyDnaGWrh0GheTXV-0-a86d83175ce05eeeb31bfda172c17f29)
因此
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0073_0011.jpg?sign=1739288800-yR14tZxRmvNznvnLr79RiQTEJO3OSzcO-0-6f1722f855e24d63c99cef02ce590860)
42.随机变量服从(0,1)上的均匀分布,Y=eX, Z=|lnX|,分别求随机变量Y与Z的概率密度fY(y)及fZ(z).
解 y=ex在(0,1)内单调,x=lny可导,且,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0002.jpg?sign=1739288800-8jsg4evlcpO8kgWOini3hcxHWmJerD7D-0-7e8c4f05b5f1cdf5c2a0e3ca2bd2351d)
在(0,1)内,lnx<0, |lnx|=-lnx单调,且 ,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0004.jpg?sign=1739288800-luVV7FgWfwgfE7h5btc2vp7kv3dx0bvU-0-633129ee970b3bb1fef012c291069616)
43.设X服从参数λ=1的指数分布,求的概率密度fY(y)及Z=X 2的概率密度fZ(z).
解 在[0, +∞)上单调,x=y2(0≤y<+∞),
.根据题意有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0008.jpg?sign=1739288800-4Vg6M9yw8empKzu5Sumi6lK2f0ZXSrHV-0-990f3b6326ba426b86519b41b55d2ed4)
因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0009.jpg?sign=1739288800-KFt3NwiqPVzsM7YmB6IgQ7sZOxhzg4TK-0-a7affce269d1427d17a0d2a45961eb45)
z=x2在[0, +∞)上单调 ,因此有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0011.jpg?sign=1739288800-V9irVtTruaixb7oC9vCxWtuJyxzMlBlM-0-a6107b25c6530e569213bac4d6a62636)
44.随机变量X~f(x),当x≥0时 ,分别计算随机变量Y与Z的概率密度fY(y)及fZ(z).
解 由于y=arctanx是单调函数,其反函数是 在
内不恒为零,因此,当
时,有
在x>0时也是x的单调函数,其反函数为
,因此当z>0时,
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0016.jpg?sign=1739288800-ZjIPNHokwXy7XuSazye7R5hJ3lFPOtdH-0-36029e7b641dae7dd415c66ee5334266)
即Y服从区间 上的均匀分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0074_0020.jpg?sign=1739288800-2ux8ISbvfJOgCav8l2b1uR119IJNlTsn-0-fff5224dfd2f4cfdf6707392788a8de6)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0001.jpg?sign=1739288800-CPFdD4A0buqdi8SkvdwcYOD4WxegSjvA-0-081f5e9a1a596f547ef6e6223e8efe80)
即与X同分布.
45.一个质点在半径为R、圆心在原点的圆的上半圆周上随机游动.求该质点横坐标X的概率密度fX(x).
解 如图2.1所示,设质点在圆周位置为M,弧的长记为L,显然L是一个连续型随机变量,L服从[0, πR]上的均匀分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0004.jpg?sign=1739288800-q4jmNByQtPmUwrxelY1ZQlpf84zJrH76-0-3836cfc19b24f86c229a85c9cafc9b3f)
M点的横坐标X也是一个随机变量,它是弧长L的函数,且
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0006.jpg?sign=1739288800-foNelu6mdP5BqAOhdiSM7YcH3WHly378-0-90a21df71fc4be1e5f18d3333588d8a7)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0005.jpg?sign=1739288800-trKIQGHOxsTTS4L8NiMIGKIkQ487krmC-0-9c961ab463f0e6dd8e8c00fa1ede4fec)
图 2.1
函数x=Rcos(l/R)是l的单调函数(0<l<πR),其反函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0007.jpg?sign=1739288800-vMD32rDXciAlSrumUjTI1JjhQspJQwqV-0-0777a91a2d3f7f30051f5fb1ef424d60)
当-R<x<R时,l'x≠0,此时有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0008.jpg?sign=1739288800-rV33bqJbM5l5PQVlPWma4h2qmQm9B2Xy-0-c0c5d0636cda9f8f724020c7716fab25)
当x≤-R或x≥R时,fX(x)=0.
46.设X~N(3,4),求:
(1)P{X≤2.5}; (2)P{X>1.3}; (3)P{1≤X≤3.5};
(4)P{|X|>2.8}; (5)P{|X|<1.6}; (6)P{X-2>5}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0075_0009.jpg?sign=1739288800-J3ot84nyT3wsRYwI5zrXHjNlKrECztCW-0-2df9da4fdc53f079b95b55738f51695e)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0001.jpg?sign=1739288800-OtfPApUmfjajpF9iRlW2gHsWODUR3BfG-0-e0246332de7490c48bc989a81f3be493)
47.随机变量X~N(μ, σ2),若P{X<9}=0.975, P{X<2}=0.062,试计算μ和σ2的值并求P{X>6}.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0002.jpg?sign=1739288800-4MW5qVmqeVXMX2WAgFF7GSe1MXVU8dJX-0-effc112fc9b05dd9c33e2fae5ee7a604)
查表得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0003.jpg?sign=1739288800-KCnlTTPpyQWb5VlqQH6TCBmq0DgxqhZ9-0-d3441f322d87ea411af7cd5a8d6f396c)
解关于μ和σ的方程组,得
μ=5.08,σ=2.
故
P{X>6}=1-P{X≤6}=1-Φ(0.46)=0.328.
48.已知随机变量X~N(10,22), P{|X-10|<c}=0.95, P{X<d}=0.023,试确定c和d的值.
解 查表得
.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0076_0006.jpg?sign=1739288800-QrptrrgMQbtdOe67QODEemPT5VaEnYtq-0-9f569bd0465b7c69a6e76f50b90b2a13)
查表得 .
49.假定随机变量X服从正态分布N(μ, σ2),确定下列各概率等式中a的数值:
(1)P{μ-aσ<X<μ+aσ}=0.9;
(2)P{μ-aσ<X<μ+aσ}=0.95;
(3)P{μ-aσ<X<μ+aσ}=0.99.
解
(1)2Φ(a)-1=0.9, Φ(a)=0.95, a=1.64;
(2)2Φ(a)-1=0.95, Φ(a)=0.975, a=1.96;
(3)2Φ(a)-1=0.99, Φ(a)=0.995, a=2.58.
50.设X~N(160, σ2),如要求X落在区间(120,200)内的概率不小于0.8,则应允许σ最大为多少?
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0001.jpg?sign=1739288800-5ty3eHF3hvUEjNTeZFysse0TZUGAWRyC-0-e330de2a80370ed93a060c01f1ce6047)
查表得Φ(1.28)≈0.9,于是可得.故σ最大约为31.
51.设一节电池使用寿命X~N(300,352),求:
(1)使用250h后仍有电的概率;
(2)满足关系式P{|X-300|<d}=0.9的数值d;
(3)满足关系式P{X>c}=P{X<c}的数值c.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0003.jpg?sign=1739288800-HEWjytyVZyeWeIdXY8IhGpyA9n8vVXgD-0-b96054595f5cb1550498fb10e8ef12d0)
52.设某班有40名同学,期末考试成绩X~N(375,81),假设按成绩评定奖学金,一等奖学金评4人,二等奖学金8人,问至少得多少分才能得到一、二等奖学金?
解 假设分别至少得分为a和b,才能得到一、二等奖学金.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0004.jpg?sign=1739288800-khh1v477o1xbqQtDPo1GzyVsLEPjyRgL-0-4ec744477e496fb5745bd47c5b51eecf)
(B)
1.设随机变量X的概率密度为f(x),且f(-x)=f(x).F(x)是X的分布函数,则对任意实数a,有( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0005.jpg?sign=1739288800-yfLF3H4NcRyGF8EcKWA7KGVtyawgnuyz-0-38e8cf3c0632ec9f306dbb011ea81200)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0077_0006.jpg?sign=1739288800-q2gT17I27KqZvbVum2YYSz3clw2U0o38-0-51d881c8d022ead427c45d92993338a6)
C.F(-a)=F(a);
D.F(-a)=2F(a)-1.
解 ,
由于
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0001.jpg?sign=1739288800-d8unIP4pgw5NwBxBIOmI4zoxJjkFqEhT-0-de4119cfe4fa950c0fd2428686d0301e)
所以
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0002.jpg?sign=1739288800-hGz5JA8PxnAuDFEbSlh0AhP3oGYHCyiW-0-ffffd50ee36b726537b9e175793dd2bf)
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0003.jpg?sign=1739288800-YqRMXd5dyHtEzlf4UbyKi8x1dLTQ3x9k-0-ce8b5cae64ea7e788845d6a878603cc6)
所以有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0004.jpg?sign=1739288800-11UBoyLUEd6awEeGLBq66tCLzKguO7ix-0-8f5b11229c393292761511127ef4b221)
B为正确答案.
2.设F1(x)与F(x2)分别为随机变量X1与X2的分布函数,为使F(x)=aF1(x)-bF2(x)是某一随机变量的分布函数,a, b的值应取( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0005.jpg?sign=1739288800-WFtceUT8LA27phniZuMhY1ddslgfCnXn-0-4d0bffd1fcc23fed57fe55718ae6b9a2)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0006.jpg?sign=1739288800-EiNNBXwTIctc9Vh7thLNPmoT3RlTMiko-0-81fe64c514ec66c2fcd51b5fbb45fd10)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0007.jpg?sign=1739288800-6D2qDsNXw0NCZgi4kfTcgvt0ioJiBvVF-0-c9a9b646bbbfed40f9eaa28b8f0536c1)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0008.jpg?sign=1739288800-NkW09EX9vNYM3f2WaCBpQKBcjPtcbXEd-0-10d193fec5daa09ac6648620584a4415)
解 由分布函数的性质,应有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0009.jpg?sign=1739288800-POIxht6NvRig68y5nyEVVe4PcDlaP5eT-0-c93235061451fe74b4b3eb92c3a5ec16)
所以A为正确答案.
3.设随机变量X服从正态分布N(μ, σ2),则随σ的增大,概率P{|X-μ|<σ}( ).
A.单调增大;
B.单调减小;
C.保持不变;
D.增减不定.
解 由正态分布的标准化变换得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0010.jpg?sign=1739288800-mj1gJMyxQYzmgiWs4mNTsHmXo1ps9exx-0-c9841ebd090e87de2dbc536a59f5ac39)
所以概率P{|X-μ|<σ}的大小与σ无关.C正确.
4.设随机变量X服从正态分布N(μ1, θ21),随机变量Y服从正态分布N(μ2, θ22),且P{|X-μ1|<1}>P{|Y-μ2|<1},则必有( ).
A.θ1<θ2;
B.θ1>θ2;
C.μ1<μ2;
D.μ1>μ2.
解 因为θi>0(i=1,2),由正态分布的标准化变换有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0078_0011.jpg?sign=1739288800-j90gzDspcG7wBuPJtWSyyyaWYdR3bMNU-0-22a1a4bcc35518dd96f8248e0fb58c91)
所以A正确.
5.从数1,2,3,4中任取一个数,记为X,再从1,2, …, X中任取一个数,记为Y,求P{Y=2}.
解 显然,随机变量X能取1,2,3,4这4个值,由于事件{X=1}, {X=2}, {X=3},{X=4}构成完备事件组,且,则有条件概率
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0002.jpg?sign=1739288800-XIQDwj3PPweDn2VW4lSq5vvhTtzPef3m-0-8069fa76a36a22988e74b20c93695197)
所以由全概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0003.jpg?sign=1739288800-nh5h9RYooF1pxIDZaAgLtHIhrsO2lefC-0-0e2edf0bfa3195db48e20e584118c8d4)
6.设在一段时间内进入某一商店的顾客人数X服从参数为λ的泊松分布,每个顾客购买某种商品的概率为p,并且每个顾客是否购买该种商品相互独立,求进入商店的顾客购买该种商品的人数Y的概率分布.
解 由题意得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0004.jpg?sign=1739288800-zXLWEMwDhfmObfQeEnjYIrTyH3LONqvU-0-5aa2a6cc91e92ed78c2cb66460a8c23b)
设购买某种物品的人数为Y,在进入商店的人数X=m的条件下,随机变量Y的条件分布为二项分布B(m, p),即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0005.jpg?sign=1739288800-npaXdrJsnyO9UxTSlkFKwLhFdorHkoql-0-f511746a0a54bfc48743dfbb2467ffd1)
由全概率公式得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0006.jpg?sign=1739288800-OmH0lwVE8ZPscbMHvTfSZNvzCu2b9J08-0-d69b5883731d130f1dfe0db70b00ac6a)
7.设X是只取自然数为值的离散随机变量.若X的分布具有无记忆性,即对任意自然数n与m,都有
P{X>n+m|X>m}=P{X>n},
则X的分布一定是几何分布.
解 由无记忆性知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0079_0007.jpg?sign=1739288800-XTuzo40fuswqtqjFx3u0743yUx2yU60g-0-db78a470c0ad6ce3acf4c05dd4886b5f)
或
P{X>n+m}=P{X>n}·P{X>m}.
若把n换成n-1仍有
P{X>n+m-1}=P{X>n-1}·P{X>m}.
上两式相减可得
P{X=n+m}=P{X=n}·P{X>m}.
若取n=m=1,并设P{X=1}=p,则有
P{X=2}=p(1-p).
若取n=2, m=1,可得
P{X=3}=P{X=2}·P{X>1}=p(1-p)2.
若令P{X=k}=p(1-p)k-1,则由归纳法可推得
P{X=k+1}=P{X=k}·P{X>1}=p(1-p)k, k=0,1, …,
这表明X的分布就是几何分布.
8.假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情况下,再无故障工作8小时的概率Q.
解 发生故障的次数N(t)是一个随机变量,且N(t)服从参数为λt的泊松分布,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0001.jpg?sign=1739288800-sJfVCP6zc6pbwiunxhAXojVbltcqhqLZ-0-7be0f6c9d048e1a21d9f87f613ad69ac)
(1)相继两次故障之间时间间隔T是非负连续型随机变量,所以,当t<0时,分布函数为F(t)=P{T≤t}=0;当t≥0时,{T>t}与{N(t)=0}等价,于是有
F(t)=P{T≤t}=1-P{T>t}=1-P{N(t)=0}=1-e-λt,
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0002.jpg?sign=1739288800-K0S2H1gQy1fnfpzbNloN6K3xgReXYmkd-0-0366cccd957c647d10a9c944317cf522)
因此,随机变量T服从参数为λ的指数分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0003.jpg?sign=1739288800-ymWp6vvXuW45LdytvJLWRmCyICw6LszI-0-ada483b7a180397c928706aa339d93ae)
9.设随机变量X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0004.jpg?sign=1739288800-CQ6F5AEVR04bWwsV71LAsmbpAwZg5aYn-0-0345952b5986df6a25b9724cf2335bab)
F(x)是x的分布函数,求随机变量Y=F(X)的分布函数G(y).
解 对X的概率密度积分得X的分布函数
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0080_0005.jpg?sign=1739288800-oblxyodQ1jGnbH35AZtA782uRVNYWWg2-0-7ac3dd083db5f6fba16d9cc770e4cb37)
当y≤0时,有
G(y)=P{Y≤y}=P{F(X)≤y}=0,
当y≥1时,有
G(y)=P{Y≤y}=P{F(X)≤y}=1,
当0<y<1时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0001.jpg?sign=1739288800-p3hcF6SHPliHVO6UtVn2B6mGAhld1P1q-0-3989405e16d7a49f89a9eb09c93fba48)
或
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0002.jpg?sign=1739288800-nJHSsckLejA4BP9cH5BFWzS4L1BVcrYG-0-40a57c6cb43c313ca12828d6ced0ea25)
于是,Y=F(X)的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0003.jpg?sign=1739288800-gj1Ba66ob0wdEwprFDsUnPBv6yxWmugD-0-25d914303eff9719b847cfc0d9fa5db6)
即Y=F(X)服从区间[0,1]上的均匀分布.
10.假设随机变量X服从参数为λ的指数分布,求随机变量Y=min{X, k}的分布函数(k为一常数,k>0).
解 由题设条件
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0004.jpg?sign=1739288800-sujAM1lhnY4nN5rZpUonox3oxROC2t2d-0-71557dd76253eb96374b7fa05b50cace)
所以
FY(y)=P{Y≤y}=P{m in{X, k}≤y}.
当y<0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0005.jpg?sign=1739288800-6n12XLtb5cipHwMetGrHwkz9zoG2Ngw9-0-f24134d7690c8877ee46e485dd885060)
当0≤y<k时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0006.jpg?sign=1739288800-nLgcN4Woqno56LX0KNVUUOtLBNAfLdAZ-0-397a139a1309924963ca36faeb22f86b)
当y≥k时,有
FY(y)=P{Y≤y}=P{m in{X, k}≤y}=1.
所以Y的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0081_0007.jpg?sign=1739288800-KlQyfyQbw3nUiPwlZ7wJvlHKFikSmMzn-0-1a411ec73b669a5b4e692b2956fbf098)