![经济数学—概率论与数理统计学习辅导(高等学校经济管理数学基础辅导系列)](https://wfqqreader-1252317822.image.myqcloud.com/cover/400/23912400/b_23912400.jpg)
二、典型例题
(一)利用古典概型的概率计算方法及运算法则求事件{X=k}的概率(即X的分布列),并进一步求X的分布函数
例1 一台设备由三大部件构成,在设备运转中各部件要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,试求:
(1)X的分布列;
(2)X的分布函数F(x);
(3)P{X=2.5}, P{X≤1}, P{1<X<3}.
解 设事件Ai={部件i需要调整}(i=1,2,3),由题设知P{Ai}=0.1, P{A2}=0.2, P{A3}=0.3, X的可能取值为0,1,2,3,注意到A1, A2, A3相互独立.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0001.jpg?sign=1738855019-Ph0mJIjbE1ZWm0AC0kASQGOisJLole1g-0-9661e8833038f44cc4a0b93e47d06507)
于是X的分布律如下表所示:
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0002.jpg?sign=1738855019-IIINH7gnEDK84scngiXdYZvYd4mEgGRk-0-8ca8c49c93b9e6feed216768647d45ee)
(2)X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0003.jpg?sign=1738855019-MMiXrtvel8fueJiIQ2T2xKXEyR1yb85y-0-ee210e647660c6bfa92c2380a5be5b69)
(3)P{X=2.5}=0,
P{X≤1}=P{X=0}+P{X=1}=0.504+0.398=0.902,
P{1<X<3}=P{X=2}=0.092.
(二)应用分布的充要条件求分布中的未知参数或确定分布
例2 求下列分布中的未知参数a:
(1)已知随机变量X的分布律为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0056_0004.jpg?sign=1738855019-65yb4BMVZAsLvQgGB02qPuorRJW0YaRj-0-9f2168435f32d101b29ffdcbebba0c8c)
(2)已知随机变量X的概率密度为(x∈R, λ>0, μ为常数).
解 (1)由题设知0<a<1,且(1-a2-2a)+(1-5a2)+a=1,由此解得.
(2)由题设知,而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0004.jpg?sign=1738855019-dV1hZ4dU6s2OXCnjYf9WS4JWhHEU7Nfj-0-0f5773a352aff153aa896c02c7bb03f0)
故
例3 设连续型随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0006.jpg?sign=1738855019-ARQZSCQJuWstp4ZSsTggINKDsLDAqXpQ-0-c2ded83b366009e4559f132111c174ef)
试求:(1)A, B的值;
(2)P{-1≤X≤1};
(3)X的概率密度f(x).
解 (1)由分布函数的性质F(+∞)=1,可知
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0007.jpg?sign=1738855019-d1lsIcmNriNoAJBpXoUJ8nwcIvEYzRlN-0-bf45ac530aa2b06dab909ac83e8b8ef8)
又由于X是连续型随机变量,因此F(x)连续,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0008.jpg?sign=1738855019-KETMCf4otf5ib2XrYDkSnHr6V3pV1BXA-0-a2e0a09d9512dc066c35d22009eaf745)
所以有A+B=0,从而B=-1,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0009.jpg?sign=1738855019-QrBmibOCnF9ooZlTqyVrWPw64yKHRWUf-0-bfa9593254aa12a9b2a2099603b8cc02)
(2)P{-1≤X≤1}=P{-1<X≤1}=F(1)-F(-1)=1-e-2.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0010.jpg?sign=1738855019-Sz14tAlZbuvFgOE0C9ICQLPqcWal8Vad-0-e6342b703518d79483d2d235c684b8ba)
(三)分布函数、分布律、概率密度函数之间的关系与转换
例4 (1)已知离散型随机变量X的概率分布为P{X=1}=0.2, P{X=2}=0.3, P{X=3}=0.5,求X的分布函数.
(2)已知随机变量X的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0057_0011.jpg?sign=1738855019-4savulgwxUvnR06FTQtlDIdXyR7O55LB-0-011010363dcec7259b0508b47fbf0fb3)
对X的每一个可能取值xi,有P{X=xi}>0,求X的概率分布.
解(1)应用公式即可求得分布函数
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0001.jpg?sign=1738855019-XLnhQzMuduWc30kXHo9hzQ5j1XdrKd4x-0-37394a1a143c91a9f293791f30f7867a)
(2)应用公式P{X=a}=F(a)-F(a-0)即可求得X的分布律
P{X=-1}=0.4-0=0.4,
P{X=1}=0.8-0.4=0.4,
P{X=3}=1-0.8=0.2.
例5 已知连续型随机变量X的概率密度函数为, x∈(-∞, +∞),求X的分布函数F(x)及
解
于是当x≤0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0005.jpg?sign=1738855019-hOMRxjb1XwNSbIHoB9kIbUDGyC6pOzhP-0-e30ec13d273fc837958b25d942ab20d8)
当x>0时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0006.jpg?sign=1738855019-2wXjvkwbqYrme20OtHyBhlUKA39K0RcV-0-fe5f2b77702a67a7ffd9e9295b8fab2c)
综上可得
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0007.jpg?sign=1738855019-r7CsIWk0q4Q44FCtp9Asj9xi4s68Ugnf-0-de21d03338144a2cd031ce6c8e204d74)
继而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0008.jpg?sign=1738855019-6tWnyN5oT3NrhV7EdxS1SOSScWR2uUTX-0-aa4190ffe222bca3fe5a8c023a4a04be)
例6 设随机变量X的概率密度函数关于x=μ对称,证明其分布函数满足
F(μ+x)+F(μ-x)=1, -∞ <x<+∞.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0058_0009.jpg?sign=1738855019-TD2UVE1LkbBgqDhYLZqJ7ytYxZoc46Pn-0-9841b87681cf3f9e4c6b3184ac4b89c1)
又由概率密度函数的对称性知
f(μ-u)=f(μ+u), u∈(-∞, +∞).
故有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0001.jpg?sign=1738855019-pHYGWIgor2Lbwgen8rtTXlIpOaGpG7Fd-0-e7d8e2977f759d8871029d0f8d3d17da)
例7 (1993年数四)设随机变量X的概率密度为f(x),且f(x)=f(-x), F(x)是X的分布函数,则对任意实数a,有( ).
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0002.jpg?sign=1738855019-QZhU3TP6fojz8I17SfL80qaPtfF8E5fM-0-74ea5bbe2adff58bee9c06ee49624a25)
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0003.jpg?sign=1738855019-snZT3SfymC2s0ojEXzM3sauW0ZmRnn8z-0-e66afb1e2c08d30a8a5a85757fb7fe52)
C.F(-a)=F(a);
D.F(-a)=2F(a)-1.
解 由题设知f(x)为偶函数,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0004.jpg?sign=1738855019-TuybzksqK5qPFQHGtUrQPyBjRT46rCUf-0-780617cac3e1dc00ab7871a73d8fda94)
而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0005.jpg?sign=1738855019-1WRD5zz9WXnK0ZVkUh1LMot1oDQqJ4av-0-943eff9013ec87fac979209882e3a74e)
故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0006.jpg?sign=1738855019-fEwEVpnuC6wDpWmaHM9LLB9TFyuR1qTE-0-8844a5885b8b5e82e0b980bebe217b2c)
因而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0007.jpg?sign=1738855019-RFxuywBT89SzESjnrOWTEDAam7HKYQqg-0-d976ff0de33a9d432c5e8a1e40abc6cc)
应选B.
(四)几种重要分布的应用
例8 假设一大型设备在任意长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布,求:
(1)相继两次故障之间时间间隔T的概率分布;
(2)在设备已经无故障工作8小时的情况下,再无故障运行8小时的概率Q.
解 (1)由于T是非负随机变量,可知当t<0时,有
F(t)=P{T≤t}=0.
当t≥0时,事件{T>t}与{N(t)=0}等价,所以当t≥0时,有
F(t)=P{T≤t}=1-P{T>t}=1-P{N(t)=0}=1-e-λt,
从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0059_0008.jpg?sign=1738855019-8XiYD9meA6ROrCtjWNyAIcnrDsBEI8SK-0-b528053ddb84f2aab0cce41bbe40bf13)
即T服从参数为λ的指数分布.
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0001.jpg?sign=1738855019-aWqQRVWwvU8H6F74Xuwhfjcxlv3oPXS2-0-b63fff0aed5943a4e8db366b84b79940)
例9 假设测量的随机误差X服从正态分布N(0,102),试求在100次独立重复测量中,至少有3次测量误差的绝对值大于19.6的概率α,并利用泊松分布近似求出α的近似值(要求小数点后取两位有效数字).
解 设p为每次测量误差绝对值大于19.6的概率,即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0002.jpg?sign=1738855019-K2Zl0Ea13vuM2EOkvt9umFccrxOBFUOc-0-cf64c0b10f2fbfdbec3c038cfda9170d)
设Y是100次独立重复中事件“测量误差绝对值大于19.6”发生的次数,则Y~B(100,0.05),从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0003.jpg?sign=1738855019-bBUviwN6Rgibt37Ud5U3Q7ax1RnVt8Nd-0-0893633085bce2e568f97c309996fd66)
由泊松定理,Y近似服从参数为λ=np=100 × 0.05=5的泊松分布,故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0004.jpg?sign=1738855019-PQIq98j6z5RZBEXA7bHFo5aXj3Vs9MMg-0-5d2fced5a71af352e17761e85998438b)
例10 现有两把精度不同的尺子,第一把尺子测量的误差服从正态分布N(0,4),第二把尺子测量误差服从正态分布N(0,9).现随机选取一把尺子进行测量,求测量误差的概率密度函数.
解 记X为尺子的标号,则,记Y为测量的误差,求FY(y)=P{Y≤y}.
由全概率公式,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0006.jpg?sign=1738855019-JyAOEbt2TZ5GhhhlXhhAKCrTkt1iXPv7-0-c74281266ba81a388fdbfeb2cd4af332)
从而
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0007.jpg?sign=1738855019-ZfIO05crazjQ9B8AogoHDe1N9tr3HZ2w-0-8cccc122ce2238928a75a788a8d6cad2)
例11 设顾客在某银行的窗口等待服务的时间X(单位:min)服从指数分布,其概率密度为, .
顾客在窗口等待服务,若超过10min,他就离开,他一个月要到银行5次,以Y表示一个月内他未等到服务而离开窗口的次数,写出Y的分布律,并求P{Y≥1}.
解 该顾客在窗口未等到服务而离开的概率为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0009.jpg?sign=1738855019-4rsNfuqObf32gBma5rrEm9YBvqSzQv0K-0-c0f83bae405bfd823ba96b834d236ca9)
显然Y~B(5, e-2),故
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0060_0010.jpg?sign=1738855019-jFSJMeNPPX9ENEoFr67BLiZNQcwGG69M-0-a1cc0958160b27435e09dc822b70fde4)
P{Y≥1}=1-P{Y=0}=1-(1-e-2)5=0.5167.
例12 在电源电压不超过200V,200~240V,超过240V三种情况下,某种电子元件损坏的概率分别为0.1,0.001,0.2.假设电源电压服从正态分布N(220,252),试求:
(1)该电子元件损坏的概率α;
(2)该电子元件损坏时,电源电压在200~240V的概率β.
解 令A1={电压不超过200V}, A2={电压在200~240V}, A3={电压超过240V}, B={电子元件损坏},则
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0001.jpg?sign=1738855019-KdGPRuM8ZY62UPwA6nwvyVTBTtydcVh4-0-cb2904b3f523a62ecd0f1ce8c554f9f0)
由题设知P(B|A1)=0.1, P(B|A2)=0.001, P(B|A3)=0.2.
(1)由全概率公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0002.jpg?sign=1738855019-iFN4N9uvWhJzZjNHPChO0HWG0484SPAB-0-9a17558ec1a9cbf19d6ac4dff5fdd29f)
(2)由贝叶斯公式有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0003.jpg?sign=1738855019-B0IcboEXq7RrMi5OpCAtF8DhmR567TcB-0-4f8ef3b547110424f0ff35f026cf6d1d)
(五)由随机变量X的分布求其函数的分布
例13 设X在区间(-2,1)服从均匀分布,求Y=X2的概率密度.
解 X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0004.jpg?sign=1738855019-tjQiGQrYS7f2OePHup4OsnL0L3galsen-0-672961f0b326a17902209d6fc076d3b0)
先来求Y的分布函数FY(y).因0<Y=X2<4,故当y≤0时,FY(y)=0,当y≥4时,FY(y)=1.当0<y<4时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0005.jpg?sign=1738855019-4DQoGv5SbeONBnhP0UmNjpEB66dJpzSV-0-56696893c90b5eaf47e40c63b034d8f9)
将FY(y)关于y求导数得到Y的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0006.jpg?sign=1738855019-3nuiKl6HWTXP2nQGkOJxhISwpKypcpMj-0-238e1a8a5b5970aee6bb85534028e04b)
当0<y<1时 ,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0008.jpg?sign=1738855019-d2M4AGYmrPUyEAL9O2ufvcInHILBUCpx-0-438738fc94b6ac92117ed8a0e66ed548)
当1<y<4时 ,于是
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0061_0010.jpg?sign=1738855019-OGCGdz6SvpwtCz93P4Zo9DVtU9TkHcaA-0-9e178ec44bb311489281b63894f93d71)
因此
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0001.jpg?sign=1738855019-N5TNRbDm6KPpjb4FzGllLtLDYjZzcEB1-0-86034477ac59f902aef0b25b832120cf)
即
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0002.jpg?sign=1738855019-D6YemecFg3OyXoBksYRZEodBj7vW28xe-0-0ac562dc6c579d515af693239fca5fcd)
例14 假设随机变量X服从参数为2的指数分布,证明:Y=1-e-2X在区间(0,1)服从均匀分布.
解 由题意知,X的概率密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0003.jpg?sign=1738855019-OnMB7roOK4SrW8WoKEJgkZ1MK7JxbJfE-0-cbb7f1f68172d62e063293a5af82b90b)
函数y=1-e-2x是单调增函数,其反函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0004.jpg?sign=1738855019-m02Infk38Ww9sil6xtRku8jj4SEVrR0C-0-c7927caf1ab5ceffa26c1c59b0804e06)
当x>0时,0<y<1.所以由公式法可得Y=1-e-2X的概率密度函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0005.jpg?sign=1738855019-YsnYSyOzReY6AR0Ufu7YZDwQEZbFEmhw-0-14efaec4522b6eddf681d5534ca18c29)
于是,Y在区间(0,1)上服从均匀分布.
例15 随机变量X的概率密度为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0006.jpg?sign=1738855019-5SU7F51cQTuZ31FO09R2A9mtmSdElnrv-0-b3679057de218ed3b7bd37f53458838d)
F(x)是X的分布函数,求随机变量Y=F(X)的分布函数.
解 当x<1时,F(x)=0,当x>8时,F(x)=1.当x∈[1,8]时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0062_0007.jpg?sign=1738855019-JHpa96HLBc6RRYnmvlDtzaIbl5DmL6YZ-0-90ebd66eb178d23a651757fb4015c9e0)
设G(y)是随机变量Y=F(X)的分布函数,显然当y≤0时,G(y)=0,当y≥1时,G(y)=1.当0<y<1时,有
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0001.jpg?sign=1738855019-JMM08DO10uB78M5k8MO13KAFUdX7MwjF-0-f5f5f3342c4b3d71c1cc9bdaac62c20d)
故Y=F(X)的分布函数为
![](https://epubservercos.yuewen.com/1A97F7/12738942104014106/epubprivate/OEBPS/Images/figure_0063_0002.jpg?sign=1738855019-MRlqWYfjpk8vfLBL58CrEKF0DVaz5Dxg-0-eb9e7756947ecf8493025c8c9ed4eb33)