
会员
深度学习:核心技术、工具与案例解析
高彦杰 于子叶更新时间:2019-01-05 05:36:03
最新章节:10.4 本章小结开会员,本书免费读 >
本书由微软亚洲研究院的资深AI工程师撰写,是一本面向初学者的、以实战为导向的深度学习指南。本书首先详细讲解了深度学习的知识体系、核心概念、模型与算法、工具和库(TensorFlow等)等全栈技术知识,然后以案例的形式讲解了如何将这些知识应用到计算机视觉、自然语言处理、语音识别、对话机器人、人脸识别、自动驾驶领域。
品牌:机械工业出版社
上架时间:2018-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
深度学习:核心技术、工具与案例解析最新章节
查看全部- 10.4 本章小结
- 10.3 工程实践建议
- 10.2 深度学习系统性能优化建议
- 10.1 通用深度神经网络训练优化建议
- 第10章 优化实践
- 9.8 本章小结
- 9.7 动态可视化
- 9.6 三维可视化
- 9.5 可视化实践
- 9.4 ECharts
高彦杰 于子叶
主页
同类热门书
最新上架
- 会员
科学仪器设备配置学:人工智能时代的界面管理
本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。计算机17.5万字 - 会员
用ChatGPT轻松玩转机器学习与深度学习
本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。计算机18万字 智能涌现:AI时代的思考与探索
当前世界正处于百年变局,人类社会已经进入数字经济3.0时代:数字内容迭代,从1.0时代逐步迈入3.0时代;人工智能技术飞跃,从符号推理、深度学习走向知识+数据驱动的3.0时代;产业拓展更深更广,走向智能+3.0时代。随着大模型、ChatGPT、DeepSeek等智能涌现,我们该如何触发AI时代其他的突破性技术涌现?这些技术又该怎样反哺产业升级?本书阐述了人工智能技术演变的大趋势、算力驱动计算体系的计算机13.1万字- 会员
大模型应用开发:核心技术与领域实践
本书由科大讯飞与中国科大的大模型的资深专家联合撰写,一本书打通大模型的技术原理与应用实践壁垒,深入大模型3步工作流程,详解模型微调、对齐优化、提示工程等核心技术及不同场景的微调方案,全流程讲解6个典型场景的应用开发实践。本书共10章,从逻辑上分为“基础知识”“原理与技术”“应用开发实践”三部分。基础知识(第1章)介绍大模型定义、应用现状、存在的问题,以及发展趋势。原理与技术(第2和3章)详细讲解大计算机12.3万字 - 会员
AI高效工作一本通
本书共九章,分别介绍AI写作工具、AI优化简历、职场入门AI写作、AI项目策划、AI项目复盘、AI高效办公、AI高效沟通、让职场更轻松的软件和AI职场视频剪辑等内容。计算机10.1万字 - 会员
《机器学习》习题参考
本书配套周志华教授所著的《机器学习》教材,通过大量习题考查读者对机器学习相关知识点的理解与掌握。全书分为两个部分:第一部分习题对应《机器学习》第1~10章的内容,包括绪论、模型评估与选择、线性模型、决策树、神经网络、支持向量机、贝叶斯分类器、集成学习、聚类、降维与度量学习;第二部分包含6章应用专题,通过综合题的形式对知识点进行多角度考查,包括线性模型的优化与复用、面向类别不平衡数据的分类、神经网络计算机19.3万字 大模型垂直领域低算力迁移:微调、部署与优化
本书是一本深度探讨大模型在低算力环境下实现迁移与微调的实践指南,并深入讲解了大模型的部署与优化策略。书中结合多个垂直领域的应用场景,从理论到技术实现,全程详尽讲解了如何应对大模型在行业落地中的技术挑战,帮助读者逐步掌握大模型的迁移与微调核心技术。无论你是大模型开发者、人工智能研究人员,还是对垂直领域AI应用感兴趣的行业专家,本书都将带你深入大模型的核心领域,提供从构建、优化到部署的全流程指导,助你计算机13.7万字- 会员
巧用ChatGPT轻松学演讲
本书分为23章,从基础的演讲知识入手,到演讲稿的写作技巧,再到指导读者如何有效地利用ChatGPT进行演讲稿写作和演讲练习,最后通过实际的行业案例进行深入的学习和实战应用。使读者不仅可以学习演讲的相关知识,还能对如何利用ChatGPT进行有效的演讲有所理解。计算机19.1万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字