![PyTorch深度学习应用实战](https://wfqqreader-1252317822.image.myqcloud.com/cover/410/52842410/b_52842410.jpg)
上QQ阅读APP看书,第一时间看更新
第3章 PyTorch学习路径与主要功能
3-1 PyTorch学习路径
梯度下降法是神经网络主要求解的方法,计算过程需要大量使用张量(Tensor)运算,另外,在反向传导的过程中,则要进行偏微分,计算梯度,求解多层结构的神经网络。因此,大多数的深度学习框架至少要具备下列功能:
(1)张量运算:包括各种向量、矩阵运算。
(2)自动微分(Auto Differentiation):通过偏微分计算梯度。
(3)各种神经层(Layers)及神经网络(Neural Network)模型构建。
所以学习的路径可以从简单的张量运算开始,再逐渐熟悉高阶的神经层函数,以奠定扎实的基础。
![](https://epubservercos.yuewen.com/128DEE/31397898903670606/epubprivate/OEBPS/Images/Figure-P33_2461.jpg?sign=1738829590-qeFyGuW9gIJ9J1ft37U0kc1QvlF9Hqa1-0-a44bc9dab60c7a4832f0ccdfb2327a56)
图3.1 PyTorch学习路径
掌握了PyTorch的核心之后,再外扩至支持工具(TensorBoard)、移动装置(Mobile)、部署工具(TorchServe)、TorchScript、效能提升工具(Profiler)、平行及分布式处理等。
![](https://epubservercos.yuewen.com/128DEE/31397898903670606/epubprivate/OEBPS/Images/Figure-P33_2469.jpg?sign=1738829590-S2zYm20tJ9rvGPTIYdTjBl2uiMI2DDJ3-0-3dd94291f68f36ec70456a3346a5712f)
图3.2 PyTorch其他工具与扩充模块