![数学建模与数学规划:方法、案例及编程实战(Python+COPT/Gurobi实现)](https://wfqqreader-1252317822.image.myqcloud.com/cover/577/52521577/b_52521577.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.2.7 半定规划
半定规划(Semidefinite Programming,SDP)的目标函数为线性表达式,约束条件包含半正定约束。在给出其一般形式之前,我们先来介绍一下什么是半正定矩阵。
半正定矩阵(Positive Semidefinite Matrix):给定实对称矩阵A∈Rn×n,若对于任意n维非零实向量x,xTAx≥0恒成立,则称矩阵A为半正定矩阵。
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_34.jpg?sign=1739229116-cOmeeYNIQQKnP1QVRQ2ci1Yfycyw3LJs-0-758b3462e4be3a9e28f796b76752ecd0)
为方便叙述,定义以下符号:
·Sn:所有n维对称矩阵的集合。
·:所有n维半正定(Positive Semidefinite,PSD)矩阵的集合。
根据文献[36][3],半定规划的标准形式如下:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_36.jpg?sign=1739229116-oVHG186fZtzHqOiC48eREQRzrW1FvzXH-0-22c9d2b8526fa4a4c5009dbb6212fd6e)
其中,C∈Rn×n;X∈Sn,是半正定决策变量矩阵;Ai∈Rn×n,bi∈R;符号“·”表示矩阵的内积,即,符号
表示半正定,约束
一般被称为半正定锥约束。
下面给出一个半定规划的简单例子。考虑一个最小化问题,令n=3,m=3,且给定下列参数:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_40.jpg?sign=1739229116-JyZBzWhXNLGnHfUZMhgemB6bsxVXxsNV-0-ed591e29ecd8abab4a7d0fd5cb9149ce)
以及一个3×3的决策变量矩阵:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_41.jpg?sign=1739229116-13P8GjVp69BGCph9abxIgtwcnysHNKqP-0-2ef7ae189e7f23c6b003b5e0247eef9a)
则上述数据就可以构建一个SDP的数值案例。注意,X为对称矩阵,因此xij=xji,∀i,j∈{1,2,3}。
接下来将其写成展开的形式。
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_42.jpg?sign=1739229116-pAkWIlsmXD3aYk9iHX8q9Po7EMXpIvbK-0-545d2d50961a130b7c32c4e57f04a391)
其他部分的展开也类似。最终,上述案例可以写成如下形式:
![](https://epubservercos.yuewen.com/0DD641/31155568907421606/epubprivate/OEBPS/Images/txt002_43.jpg?sign=1739229116-uBlBGlhPGA0LkkQX9YcK6DzYkiT995Ek-0-1a1176339d4a6cf34a35812af94616dd)