![沼气液化制取生物质LNG技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/772/41807772/b_41807772.jpg)
2.2.1 相平衡计算方程
状态方程是计算混合气体相平衡的有效方法。相平衡计算的目的是确定混合气体处于气、液平衡时压力、温度及气、液相组成之间的关系,本章利用SRK、PR方程,采用C语言编程,计算液化系统中的压缩因子、闪蒸气体的气液相平衡比,对结果采用误差分析法确定计算的正确性。
(1)逸度和逸度系数
逸度是压力、温度变化引起的Gibbs能的变化,即
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P053.jpg?sign=1738866654-mgfMALshJEZ5joMGlR4AX9R2hWO4EZKi-0-c577dd1bc46a69ed749dfa7ee0b70f74)
恒温下的理想气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P054.jpg?sign=1738866654-HkM8riotEL11DV28cG42yFuEHFVH3mCn-0-9927f8ed13fc8d458a3b8c88b07ed850)
在恒温条件下,1mol纯气体的化学位可表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P061.jpg?sign=1738866654-0R5WHdkLkEAmBqDFTlDsieDKatPuIuzG-0-47c70c97e71a33499da1faebff839815)
式中,μ0为标准化学位。
理想气体,则式(2-20)可写成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P060.jpg?sign=1738866654-9Kd40zWN3TrioCgsa4MQuS5ciDFoOSRc-0-fb44ff3eaea416f6653f85029b22a99d)
式(2-19)不适合真实气体。G.N.Lewis提出以逸度f代替压力,用在实际气体中:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P062.jpg?sign=1738866654-TBJwWynF7daegdld4sfIO1GedAUy4bs3-0-01ce515c26ff447b8aa06ca3b58be972)
当压力很低时,逸度等于压力。因此
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P065.jpg?sign=1738866654-bksuy3brNYiTr4Rzh5Z2IBmAkIEp8zOS-0-40ff064aada78f2ccb8cc3259964c8c2)
对于真实气体
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P067.jpg?sign=1738866654-smpmKXKdPrEIeCNlZxaHWhMCvGUf214p-0-ec3bce5c8573fd3b60b8e53c7d0cf3ad)
式中,ϕ为逸度系数,是压力p的函数。由式(2-23)可知,理想气体的逸度等于它的压力,即ϕ=1。而真实气体,ϕ可大于1,也可小于1,将式(2-22)和式(2-24)合并后可得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P059.jpg?sign=1738866654-JBUahOHdcSgZWTSlE2BImURmToQNkOBC-0-01743152c8d4b2c5b60d0dc8809b877c)
积分得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P064.jpg?sign=1738866654-33UpWEXE92GXT2FZAtyZiUyzylE1M1PB-0-58863822642833a20a7f5fc57f2b5652)
将代入式(2-26),并改写为:p (2-27)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P063.jpg?sign=1738866654-VTz0EpsqxwAtEntM2wK89yYGEiOhDbbG-0-0e64309c717d538b364ae4d29113a76e)
当p0→0时,p0=f0,则上式变成:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P058.jpg?sign=1738866654-k86x47Ufbcp6gXqkySwsOb6oPAh9dAKK-0-9f166e23f62e82e81362c116a98d368f)
将上式改写为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P057.jpg?sign=1738866654-vtyPBp57SqcNdYrZ8bKeOIADIRYKKWZt-0-0ddf72607deb7f85c8bd44ea9dd55c14)
把式(2-28)右边第一项改为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P069.jpg?sign=1738866654-1OxFmF3mGTvE7w03ILl5gYCQMClKvYkK-0-a64e0bafa198acb9fb33c4e412447690)
将纯气体的PR方程代入式(2-28)得:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P071.jpg?sign=1738866654-qW4RPpKPOkeVnc1b5lbORT2JaUIfZEu1-0-ae7ec58ec72c9017abf87eab36491506)
合并式(2-30)和式(2-32),得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P074.jpg?sign=1738866654-52HSRiUfjSnb9QeCWjZVcazlM6kwJZjY-0-8b38a0d027276cfd22b8ef963282101e)
因为pv=ZRT,p0v0=RT,故
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P068.jpg?sign=1738866654-6GDxgxnhhr2v9fHpG5LKlw4JLooPWcel-0-b18b3b1548ae76b15c2487a04d571bda)
当时p0→0、v0→∞,,
,式(2-34)可-(2-1) bv0表示为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P072.jpg?sign=1738866654-bmTruzTsq6dSCrWbZZzPIVIDqlTWF4Om-0-451ef3ca49499f709e7a322c95fa39d7)
又因为
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P076.jpg?sign=1738866654-cWgi3M1CeBzOKX8bZOPlHlEgBeUFF8nE-0-bb7a2e1af09d4de1f16984821903e4af)
代入式(2-35)可得纯气体逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P070.jpg?sign=1738866654-Xi3AG4yuF8I0RJXMOwAO1HdvgalmPS6s-0-47e88b022ed619b07d77bfd89fe26c78)
气体混合物的组分逸度:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P079.jpg?sign=1738866654-oaCALEfIVFwhqaNEjmbqDBUMwi8EFR3F-0-4596ff2e025bf813e7e457f63d48ab53)
在温度T、组分yi不变的情况下,由式(2-19)得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P082.jpg?sign=1738866654-vmRT8JiglzbPKc4WPvlLUnz9zSXV2qNx-0-05ef7d0b816c8a0cc5e46d665feb02f6)
将式(2-38)代入式(2-37),即得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P084.jpg?sign=1738866654-QHQHVk3F2g2fd5NWtOBaFgT8kEFWMf9W-0-4fed8d42dee9f695e50bf29f055c355c)
将式(2-39)从0到p积分,同时将代入上式,则得
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P088.jpg?sign=1738866654-q7fuTEsO1mf0VHfWkTAsUrBEMUFrHISn-0-e73979ea2d5ab84db9d822599c33eaec)
上式改写成
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P089.jpg?sign=1738866654-nRWfdjZJ9yeM8LB8XPXHTLm9igDDcC8p-0-ab788ac2867820e63664a5f23aa5c564)
(2)混合气体的PR方程
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P080.jpg?sign=1738866654-pfswZA98G7lf8BhOaRmK1Rei7HAWpHXv-0-097fd24e2936c523bed3f8263d06e9e0)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P083.jpg?sign=1738866654-osqUy1m5BEz97OYosYhCgJWII2LbmM6H-0-1d1bdbcf314c9f0be12da84090680ad9)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P085.jpg?sign=1738866654-jZJfLqcXxkHX2RkavpLNu7pcc2NfpRJ6-0-c31b5eeac041eac1f81b1e72c644af17)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P087.jpg?sign=1738866654-CAiHohngZYg9lPqzHKUGRHKshGrHhug9-0-8afc131b360f5d4ba9fb1b535393ec37)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P077.jpg?sign=1738866654-LjnBbzFfjXyNDrFj5Wm0xwuE5bKfl6Dz-0-b9b13c1aed108f22d2987c2608469c51)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P078.jpg?sign=1738866654-IKg6iqf3iEDOLigjTPInn61LkVGIrdUe-0-ef578610115f9c1589644d1e984e961e)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P081.jpg?sign=1738866654-QivTaKgBJm4YpNo7w8OU4npf0vfagu6e-0-bfc1ee42618a5535e0bc5dca830bd9d7)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K。
PR方程用压缩因子方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P093.jpg?sign=1738866654-HNfyyRhVFxsWQhzBPoMtMZkMNp60aSvv-0-2fd5b96730350fa83494485078131656)
式中,Z=pv/(RT),B=bp/(RT),A=aβp/(RT)2
PR方程计算的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P092.jpg?sign=1738866654-342Od0r0ufAse7wqwxjd3FfYCw54I4Qy-0-5b8d338ea245fbf04bf640a56f165578)
PR计算式中其他的参数同SRK方程,计算液相逸度系数ϕi,l时,Zi为xi,计算气相逸度系数ϕi时,Zi为yi。
对于纯组分、单相混合物,式中只有1个实根,等于该相的压缩因子;在两相区,有3个实根,最大的为气相的压缩因子,最小的为液相压缩因子,中间无意义。
(3)混合气体的SRK方程
对于多种混合气体成分,SRK方程计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P090.jpg?sign=1738866654-UzmSPGcuHb76TQUvSbBaprfgBTifIPXQ-0-75fa8dad5982c6fc2fd2663adea3a8f1)
式中 p——平衡分离压力,Pa;
T——平衡分离温度,K;
R——摩尔气体常数,R=8.3145J/(mol·K);
Vm——摩尔体积,m3/mol。
a的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P091.jpg?sign=1738866654-NBzJ4WS0ruo39TvG77Kg2eoLx9ICIqTf-0-d9207045b2794641fd84e7fbcfa3314a)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P095.jpg?sign=1738866654-JDCgd3FPiP27HFlvddzErXuJMcBo2MGn-0-0fac6c712fecaa6dbd118704f0c4f22a)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P094.jpg?sign=1738866654-nXg0VO9x6aR2lJTX8XXZLeT3Nku0RFWO-0-c6b56818773391d3071f1aa102bdb13e)
式中 Tc,i——组分i的临界温度,K;
pc,i——组分i的临界压力,Pa;
Zi——组分i的摩尔分数;
Zj——组分j的摩尔分数;
wi——组分i的偏心因子;
Tr,i——组分i的对比温度,K;
Kij——二元交互作用系数。
b的计算式为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P098.jpg?sign=1738866654-4mo2QsqJrArG1ralmJEu0TooliN7xyMi-0-ba9b62adcfa0d962a344f23cd3f6ba2c)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P099.jpg?sign=1738866654-nzMNndTn2TUtqGkzt5Zz3h5sR0tIGiya-0-e201ee924d7fb61646ef023a8c157d46)
SRK方程的压缩因子方程为:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P101.jpg?sign=1738866654-GJLIZtiYLlthLVy25MlCVKJZNHX6yQUF-0-298d7f45d563442626851bd0a7f234c8)
式中,压缩因子Z=pV/(RT) (2-58)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P096.jpg?sign=1738866654-PwpCsbMEOFHIzgPQI9MsHuhRNwxaGb4Q-0-56820bd02050c0fd79a8f90e1c61b4ee)
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P103.jpg?sign=1738866654-FTKYtnqQPyIOPUVzJN1BWoVyJESou82A-0-78f8a8ee596addf640b5222400dd2ad9)
SRK的逸度系数方程:
![](https://epubservercos.yuewen.com/CC0265/21838963901801506/epubprivate/OEBPS/Images/P097.jpg?sign=1738866654-sjjy2snlgeiR5OxVT9B6ijcDwCCFErmv-0-db38f7fc5d74f1128b8f755f460ddf39)
式中,ϕi是组分逸度系数。
在计算中,已知xi、yi时,计算组分i的气相逸度系数ϕiv时,Zi=yi;计算组分i为5的液相逸度系数ϕil时,Zi=xi。