![无刷双馈感应电机高性能控制技术](https://wfqqreader-1252317822.image.myqcloud.com/cover/38/36862038/b_36862038.jpg)
上QQ阅读APP看书,第一时间看更新
2.4.2 任意速dq坐标系下的动态模型[5]
假设dq旋转坐标系的角速度为ω,如图2.2所示,θ1为PW的A相轴线与d轴的夹角,θ2为CW的A相轴线与d轴的夹角,θr为转子A相轴线与d轴的夹角,θ0为PW的A相轴线与CW的A相轴线之间的初始相位差,由图2.2可知
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_02.jpg?sign=1738893613-ipOuUUnvrOUlInil5dyZQC5kXkaKHPHv-0-2503cd0017a9d398999008ad4ea0085f)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_03.jpg?sign=1738893613-lGhLj1ZJ2rzjRjz3IT8KxLjSENkxcPrD-0-bed0c6121e440b1dd02a9ba728ac51b0)
图2.2 BDFIG的任意速dq旋转坐标系
从PW三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_04.jpg?sign=1738893613-OJ96Lr3f1jonqGxxdwV9b5ZpexIvQpFQ-0-a262edfbcbb1c9ba17afa4e4ffc5c687)
从CW三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_05.jpg?sign=1738893613-w1j7XN10wrxfgsFiRB9hgQSf6CcVbQ8C-0-cca5fdb46e29896b10ecde2899f7d46d)
从转子三相静止ABC坐标系转换到两相旋转dq坐标系的变换矩阵为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_06.jpg?sign=1738893613-LcA3bRGEHUuIuKsDYK5n3gTRbhfqdyZS-0-a235d6f2e389e157ad06f6eae183f908)
将式(2-16)、式(2-17)和式(2-19)代入式(2-20)和式(2-11),得到三相静止ABC坐标系下的PW、CW和转子的电压方程和磁链方程为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/32_07.jpg?sign=1738893613-sVHJ5oMMeHeJbcNSwpb22rP0o7LYor9Y-0-4aa2a595255bef8b04c885a87ab543d9)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_01.jpg?sign=1738893613-2IoOnwMqB6xEYVooQLVaMwGkPY4Oyb53-0-2319e92010e57bad7bc8aa1ac6ad23ce)
由式(2-36)可得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_02.jpg?sign=1738893613-G6r3Cu5D391oiqbTzVEJLrqOwzAA2ScD-0-1e9a355ea229645a10ea5d6044b992cb)
使用坐标变换矩阵T1可将u1、i1和ψ1从三相静止ABC坐标系变换到两相旋转dq坐标系,其变换式为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_03.jpg?sign=1738893613-GQiVMLp4gSQf66o8VINoWCjEo8BYZ0BC-0-b8c4680e0733b6c886b647710c16313a)
将式(2-33)和式(2-43)代入式(2-42)得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_04.jpg?sign=1738893613-9c8cbksPx6G4zWcIajC0BpRe2vj9nb9d-0-24678433c370296261c278e475f4a1f0)
由式(2-37)可得
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_05.jpg?sign=1738893613-U53WnI8sqGfJp4tLPDclvO3ZfV9pcznB-0-5a9f3362248a122a2aaf06e6179a72c4)
根据T1、M1和M1r的表达式可以计算出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_06.jpg?sign=1738893613-TOtEZjx4e5kiZ4GwJTfywnuTiZPWAiGR-0-b90b1300d109a4b4454950dc77b61b8f)
考虑到Trir=[irdirqir0]T,并将式(2-43)代入式(2-45)得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_07.jpg?sign=1738893613-Lp9nARadJuL9Fe6gBnliSXmCSruAoJau-0-4702bd8d6c193eb638a5513eb55316be)
假设电机绕组三相对称,则可以忽略零轴分量,由式(2-44)和式(2-46)分别得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/33_08.jpg?sign=1738893613-SIhZ1zOgvvgWpxVGaWezsjjDFCwoXFPo-0-177fdfa4f50721be52a9de14174a958e)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_01.jpg?sign=1738893613-zJ06foa739QHXSpRye9oBSHMsXKXHmQ0-0-6db35d89866818748e7473cdd2683893)
式中,;
。
类似地,使用变换矩阵T1、T2和Tr,由式(2-38)~式(2-41)可以推导出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_04.jpg?sign=1738893613-74YNFVNzScpwTlOsvZc10887UyhY90Vw-0-5435cf0fe76bb09503aa70e40989f5c4)
式中,,
,
,
。
由式(2-21)可得BDFIG的电磁转矩为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_09.jpg?sign=1738893613-Wmsa2gaFygTLBqiiYziZCH22ZeYOTs4k-0-0c5dc9204d8bfd87009c8d5d97f6bf85)
考虑到dθr=ωr(dt),对式(2-53)进行变形得到
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_10.jpg?sign=1738893613-nxMPalQk4SCmlhJtsNUgoV5w6bShwDlY-0-c04f7934d204606d767a2f53c512d8c0)
根据T1、T2、Tr、M1r和M2r的表达式可以计算出
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/34_11.jpg?sign=1738893613-UvVTt2N1dnKnVGwaBbWxKuLsyVznPCwl-0-4e4084058c5f569cf00bedb7dcd4de53)
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/35_01.jpg?sign=1738893613-3gMDcCmoLVyhZz1Eo4oRXZHanSYkGJBO-0-9cddcc6fbc0ef7aa7237aee6f936c96d)
于是式(2-54)可以简化为
![](https://epubservercos.yuewen.com/3E1594/19549638108901606/epubprivate/OEBPS/Images/35_02.jpg?sign=1738893613-EfhwCmWuGIAHFHwnAPhAeXk0zfHDZM0w-0-d21760eadc11484224a9600740add04e)
式(2-47)~式(2-52)以及式(2-55)构成了BDFIG在任意速dq坐标系下的动态模型。