![基于加权多维标度的无线信号定位理论与方法](https://wfqqreader-1252317822.image.myqcloud.com/cover/741/36511741/b_36511741.jpg)
5.3 基于加权多维标度的定位方法2
5.3.1 标量积矩阵的构造
方法2中标量积矩阵的构造方式与方法1中有所不同。首先令
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_322.jpg?sign=1739287708-kz6r2Rg2XfF1VCXyPv5cBOWkwcIIm7ln-0-34565c77ca766da305642a1fa268897d)
(5.96)
利用传感器和辐射源的位置向量定义如下复坐标矩阵[9]:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_323.jpg?sign=1739287708-MpBQcehGmMpkOwgvBnSOF7ZX02I23OkM-0-7fde6044473b93f07286ad2d7dc01939)
(5.97)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_324.jpg?sign=1739287708-ceLuY0oBz451E866b7V0wXcnKVHrIgye-0-89e51003e7ee195414bb84911df8ce84)
(5.98)
假设为列满秩矩阵,即有
。然后构造如下标量积矩阵:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_327.jpg?sign=1739287708-up7vPMyeoxh35r5szXuUO6Hm3xuWU9ae-0-17518eb6e7ebd10d181c69e1bebf29b3)
(5.99)
根据命题2.12可知,矩阵可以表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_329.jpg?sign=1739287708-gAjlRyKp4iBHdsQNXILauGRpmQDmiNjq-0-cae0bfb7a6e904dfa5e4ad0554470cab)
(5.100)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_330.jpg?sign=1739287708-2wpfU2aLOMwEpunqx81Y6Qpj5fAoGxMd-0-0ecd9333cc95ee335800066b3d1ab0ad)
(5.101)
式(5.100)和式(5.101)提供了构造矩阵的计算公式,相比于方法1中的标量积矩阵
,方法2中的标量积矩阵
的阶数增加了1维。现对矩阵
进行特征值分解,可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_335.jpg?sign=1739287708-4lNyupsvkeeA6dLPVzzzDeWU3ijmYFmJ-0-45fb13c047150c666c68f345964f147f)
(5.102)
式中,,为特征向量构成的矩阵;
,为特征值构成的对角矩阵,并且假设
由于
,则有
。若令
、
及
,则可以将矩阵
表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_350.jpg?sign=1739287708-MozrgR3lPi3rH2iXvCg2wOKSPLau1Ow3-0-c20c650e8622623184b133a2ab828c53)
(5.103)
再利用特征向量之间的正交性可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_351.jpg?sign=1739287708-GhjThnoN3xFuhl0KXzTdWtcuFvIqjsVR-0-82347c44b28f0be8da9f5689cf35b63d)
(5.104)
【注记5.6】本章将矩阵的列空间称为信号子空间(
也称为信号子空间矩阵),将矩阵
的列空间称为噪声子空间(
也称为噪声子空间矩阵)。
5.3.2 一个重要的关系式
下面将推导一个重要的关系式,它对于确定辐射源位置至关重要。首先将式(5.99)代入式(5.104)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_356.jpg?sign=1739287708-SyJPE5sXQQH6RLRMrbs3YgV7yqupjhSA-0-25bef5dddc985443e0d17575185a4022)
(5.105)
由式(5.105)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_357.jpg?sign=1739287708-99IgfHObWaMBiIpP2h4jYeu3AVMgJicX-0-68875b548adc238f3f95285886bd92a6)
(5.106)
接着将式(5.97)代入式(5.106)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_358.jpg?sign=1739287708-tQ6qlXmNnG4E4n0F9ALib7dsvlRed7bP-0-8d98e8a98cc739a3273c193a94537301)
(5.107)
然后将式(5.5)和式(5.98)代入式(5.107)中,并且同时消除等式两边的虚数单位可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_360.jpg?sign=1739287708-8nQ8KyeXBmw3mAHwHVVkF1sf2Y9vI7Lm-0-36efd76b4770d7f75e9030a4743e7332)
(5.108)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_361.jpg?sign=1739287708-Q0uJ2ZpH5iQtTYE7ukJYjXO9pDIUhx1W-0-18a3a266b8562ec6067144807fe3e884)
(5.109)
显然,向量中包含了辐射源位置坐标,一旦得到了向量
的估计值,就可以对辐射源进行定位。式(5.108)是关于向量
的子空间等式,但其中仅包含噪声子空间矩阵
。根据式(5.103)可知,标量积矩阵
是由信号子空间矩阵
表示的,因此下面还需要获得向量
与矩阵
之间的关系式,具体可见如下命题。
【命题5.3】假设是行满秩矩阵,则有
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_371.jpg?sign=1739287708-gIZ1zdlSjbZ99n5AFr3AFGSHxuFFe5X8-0-cd2bdb6adee3b2e27a50aed420f1402d)
(5.110)
命题5.3的证明与命题5.1的证明类似,限于篇幅这里不再赘述。式(5.110)给出的关系式至关重要,但并不是最终的关系式。将式(5.110)两边左乘以可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_373.jpg?sign=1739287708-q4HiNJdxcP8BHSPhoaZvEeZpDWCqI0UY-0-0804c519dadc8faf5b2bbebadfccbaa6)
(5.111)
式中,第2个等号处的运算利用了式(5.103)。式(5.111)即为最终确定的关系式,它建立了关于向量的伪线性等式,其中一共包含
个等式,而TDOA观测量仅为
个,这意味着该关系式是存在冗余的。
5.3.3 定位原理与方法
下面将基于式(5.111)构建确定向量的估计准则,并给出其求解方法,然后由此获得辐射源位置向量
的估计值。为了简化数学表述,首先定义如下矩阵和向量:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_379.jpg?sign=1739287708-oRBNT0cyHXRj3tMVdNWRmgMkNmv1Im2a-0-9059184d20e57584edd6d940058324b8)
(5.112)
结合式(5.111)和式(5.112)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_380.jpg?sign=1739287708-PhvtJvdRy4Sgn0rFyIO0ECvUNbE7lhdv-0-dffe697088b54d3c54bc2c031efd50c6)
(5.113)
1.一阶误差扰动分析
在实际定位过程中,标量积矩阵和矩阵
的真实值都是未知的,因为其中的真实距离差
仅能用其观测值
来代替,这必然会引入观测误差。不妨将含有观测误差的标量积矩阵
记为
,于是根据式(5.100)和式(5.101)可知,矩阵
可以表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_388.jpg?sign=1739287708-HQRiM243sEmeshN8dCC716v6eSlSOISm-0-deb8c01be5a525b3190eaf1646aae159)
(5.114)
不妨将含有观测误差的矩阵记为
,则根据式(5.109)和式(5.112)中的第1式可知
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_391.jpg?sign=1739287708-HUz5m4u9bfdA94u9BGSYXAfILFpufI66-0-00f21cace9e6765b46f5b4d5e8fe5201)
(5.115)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_392.jpg?sign=1739287708-zVdTPD6xpkLqCA6tXwTkaPDrea8ckmuz-0-116a519f035dde61ed981901559a2eaf)
(5.116)
由于,于是可以定义误差向量
,忽略误差二阶项可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_395.jpg?sign=1739287708-pYLJKFBjiCLdPxZv7nbSABxq4XPSKVF5-0-9727717a359fec2af8ddd3b3dd48ebeb)
(5.117)
式中,和
分别表示
和
中的误差矩阵,即有
和
。下面需要推导它们的一阶表达式(即忽略观测误差
的二阶及其以上各阶项),并由此获得误差向量
关于观测误差
的线性函数。
首先根据式(5.114)可以将误差矩阵近似表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_407.jpg?sign=1739287708-YcSRoi4iYqm3K4BIPHaVROKoeiNmxaep-0-871233bc76bd5a1c259ba5c4ce8be272)
(5.118)
利用式(5.118)可以将近似表示为关于观测误差
的线性函数,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_410.jpg?sign=1739287708-W6j9Z1ZYBP710J86ZANv9Mr0eXx4y3Kf-0-5a21b9dc1ea2a3f639bbeddecc05d5dc)
(5.119)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_411.jpg?sign=1739287708-rOO3BWPCgCc9PsVwjt4o8c8kXZ2QgR7M-0-852526a7154e77beec845193bf80e571)
(5.120)
其中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_412.jpg?sign=1739287708-u5Nbumem4S1oVs3l5cup3eGUagpjd9iu-0-858f0fbdb810121745216852e1c039e7)
(5.121)
式(5.119)的推导见附录B.4。接着利用式(5.115)和矩阵扰动理论(见2.3节)可以将误差矩阵近似表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_414.jpg?sign=1739287708-MXRTb89Me2oevgfZaucj2342P8J8d9kP-0-698fa30e1240de33eab0a2a723be3104)
(5.122)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_415.jpg?sign=1739287708-YxvYTNvOjEh8ZfsXF1Hx93XtlkQJ52Dp-0-424af0c8d68183d64e20efedc65d319c)
(5.123)
结合式(5.122)和式(5.123),可以将近似表示为关于观测误差
的线性函数,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_418.jpg?sign=1739287708-1ZUpDFtZRLk4UwRVrlQ0rNt4u9T1bMJq-0-e29d3895062fdf381a0373bc1fa4edde)
(5.124)
式中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_419.jpg?sign=1739287708-rh1VTiGUNwnAVpxK3KdwyN1JlGRyHVOG-0-507e41d88d51583df2ae2650f0aed5ee)
(5.125)
其中
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_420.jpg?sign=1739287708-t2rgsA5t8kpqVNd4VogoOCeaA2lQ2KTd-0-96edca1fd1d9b078ead49495cbe053db)
(5.126)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_421.jpg?sign=1739287708-4nX67RBom20QgJ45PTfb7Ej1Yrkwj07F-0-4be46b7b89149976c4caea76adacabbc)
(5.127)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_422.jpg?sign=1739287708-EsugHD4XGQMyjYwKCYd5XXbj5DOdfsQF-0-d14d1a2645fbf42c5f3189cd5f410731)
(5.128)
式中,。式(5.124)的推导见附录B.5。
将式(5.119)和式(5.124)代入式(5.117)中可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_424.jpg?sign=1739287708-6H2dsMiTCEFrsdKg5xOdm3fenzsXmlND-0-b35f87a70b19e2095a3d1fc1890f79b2)
(5.129)
式中,。由式(5.129)可知,误差向量
渐近服从零均值的高斯分布,并且其协方差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_427.jpg?sign=1739287708-SBxa4UEs7ugQAkHjho1ihbSlcsZclGl8-0-54d29154200d73c5cb900208f88f370e)
(5.130)
2.定位优化模型及其求解方法
一般而言,矩阵是列满秩的,即有
。由此可知,协方差矩阵
的秩也为
,但由于
是
阶方阵,这意味着它是秩亏损矩阵,所以无法直接利用该矩阵的逆构建估计准则。下面利用矩阵奇异值分解重新构造误差向量,以使其协方差矩阵具备满秩性。
首先对矩阵进行奇异值分解,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_435.jpg?sign=1739287708-8mJ4wNS7gJr3lprJd1yoibBx9453gDLq-0-11adeba14dd5bc1db7faf5c7bec2ef07)
(5.131)
式中,,为
阶正交矩阵;
为
阶正交矩阵;
为
阶对角矩阵,其中的对角元素为矩阵
的奇异值。为了得到协方差矩阵为满秩的误差向量,可以将矩阵
左乘以误差向量
,并结合式(5.117)和式(5.129)可得
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_445.jpg?sign=1739287708-U5ni4GK1rSeztqVgyfDahT6iaYECVGRQ-0-306723b62c29532e6c7a6a04f4d94801)
(5.132)
由式(5.131)可得,将该式代入式(5.132)中可知,误差向量
的协方差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_448.jpg?sign=1739287708-OOkwlKxomXUWoEFeo7mo3qqrfhahJUCO-0-0c1b16c6eb308a689a1db3c82ad90331)
(5.133)
容易验证为满秩矩阵,并且误差向量
的维数为
,其与TDOA观测量个数相等,此时可以将估计向量
的优化准则表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_453.jpg?sign=1739287708-DZiSROopcilnP9nLyPeQfWLa6bcZhf2a-0-9e6f915f5b873b55759d4d9c953200ca)
(5.134)
式中,可以看作加权矩阵,其作用在于抑制观测误差
的影响。不妨将矩阵
分块表示为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_457.jpg?sign=1739287708-Hy0OXcz7EIna0NtiFZO3cB4u8OtjWgfC-0-39129c7b4a7cc2aae9df46b59db955e7)
(5.135)
于是可以将式(5.134)重新写为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_458.jpg?sign=1739287708-fjGjbrNOK1YGeck2SbZw2TYUMYI6oBL4-0-20e35f39382ca39faf80fd22b1743462)
(5.136)
再结合二次等式约束式(5.49)可以建立估计向量的优化模型,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_460.jpg?sign=1739287708-ofooszJzVciqRl7ApxyjxaX7XWWlXQpw-0-16a702df41ce4de44d52328bae91d8b1)
(5.137)
显然,式(5.137)的求解方法与式(5.51)的求解方法完全相同,因此5.2.3节中描述的求解方法可以直接应用于此,限于篇幅这里不再赘述。类似地,将向量的估计值记为
,根据式(5.17)中的第2式可知,利用向量
中的前面3个分量就可以获得辐射源位置向量
的估计值
(即有
)。
【注记5.7】由式(5.130)、式(5.131)及式(5.133)可知,加权矩阵与未知向量
有关。因此,严格来说,式(5.137)中的目标函数并不是关于向量
的二次函数,针对该问题,可以采用注记4.1中描述的方法进行处理。理论分析表明,在一阶误差分析理论框架下,加权矩阵
中的扰动误差并不会实质影响估计值
的统计性能[10]。
图5.10给出了本章第2种加权多维标度定位方法的流程图。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_474.jpg?sign=1739287708-YKXl5BDLPdlnr12DNoxuTs28MntbwOZs-0-f7152b0ba11a9b560f42c4e0f15831a8)
图5.10 本章第2种加权多维标度定位方法的流程图
5.3.4 理论性能分析
下面将给出估计值的理论性能。需要指出的是,5.2.4节中的性能推导方法可以直接搬移至此,所以这里仅直接给出最终结论。
首先可以获得估计值的均方误差矩阵,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_477.jpg?sign=1739287708-W9EW9n6ZnFeSe8uHjtfjksvDIDWsYiqX-0-21d7223bc08515862e670a7d14e6ec3a)
(5.138)
与估计值类似,估计值
也具有渐近最优性,也就是其估计均方误差矩阵可以渐近逼近相应的克拉美罗界,具体可见如下命题。
【命题5.4】在一阶误差分析理论框架下,。
命题5.4的证明与命题5.2的证明类似,限于篇幅这里不再赘述。
5.3.5 仿真实验
假设利用6个传感器获得的TDOA信息(也即距离差信息)对辐射源进行定位,传感器三维位置坐标如表5.2所示,距离差观测误差向量服从均值为零、协方差矩阵为
的高斯分布。
表5.2 传感器三维位置坐标 (单位:m)
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_483.jpg?sign=1739287708-HS1BtPKl0E4FngytEXv2jwkxkFPC0PeQ-0-855e7dc4c4dd0cc3e22a545b926b633c)
首先将辐射源位置向量设为 (m),将标准差设为
,图5.11给出了定位结果散布图与定位误差椭圆曲线;图5.12给出了定位结果散布图与误差概率圆环曲线。
然后将辐射源坐标设为两种情形:第1种是近场源,其位置向量为(m);第2种是远场源,其位置向量为
(m)。改变标准差
的数值,图5.13给出了辐射源位置估计均方根误差随着标准差
的变化曲线;图5.14给出了辐射源定位成功概率随着标准差
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_494.jpg?sign=1739287708-iomUfhrBodz67947klotgzFQqLYvCkHu-0-dd8eb2f36cd4c0fed96cea074663c9ce)
图5.11 定位结果散布图与定位误差椭圆曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_495.jpg?sign=1739287708-aOV9vzssMAgqTcBPT27YrG2KhVshdjSm-0-d68512290d7f0b6a5bcbf083eee5ed22)
图5.12 定位结果散布图与误差概率圆环曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_496.jpg?sign=1739287708-bmRHFFbioCUZKoGNYEo2z5zRp12oTHEy-0-8ce7e64151f3feffce6cba30501304bd)
图5.13 辐射源位置估计均方根误差随着标准差σt的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_497.jpg?sign=1739287708-pyowgNEyxGPpjfjohYomcckHao2eklXl-0-29e120b7fe3972656ffa55762ec84895)
图5.14 辐射源定位成功概率随着标准差σt的变化曲线
接着将标准差设为两种情形:第1种是
;第2种是
,将辐射源位置向量设为
(m)。改变参数
的数值,图5.15给出了辐射源位置估计均方根误差随着参数
的变化曲线;图5.16给出了辐射源定位成功概率随着参数
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_506.jpg?sign=1739287708-znyarzwUTmw2Vue7kFXByWGqfjzoMyhu-0-ed5adccf0ec5b279db94b40147830988)
图5.15 辐射源位置估计均方根误差随着参数k的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_507.jpg?sign=1739287708-uZPiELNjd1HZgfdDfIa0DNxUtwJ813yQ-0-52021cf1763755a38245872beca62228)
图5.16 辐射源定位成功概率随着参数k的变化曲线
从图5.13~图5.16中可以看出:(1)基于加权多维标度的定位方法2的辐射源位置估计均方根误差同样可以达到克拉美罗界(见图5.13和图5.15),这验证了5.3.4节理论性能分析的有效性;(2)随着辐射源与传感器距离的增加,其定位精度会逐渐降低(见图5.15和图5.16),其对近场源的定位精度要高于对远场源的定位精度(见图5.13和图5.14);(3)两类定位成功概率的理论值和仿真值相互吻合,并且在相同条件下第2类定位成功概率高于第1类定位成功概率(见图5.14和图5.16),这验证了3.2节理论性能分析的有效性。
下面回到优化模型式(5.137)中,若不利用向量所满足的二次等式约束式(5.49),则其最优解具有闭式表达式,如下式所示:
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_509.jpg?sign=1739287708-3ne8bRrhAdAiI0GadAvaWIs588dlwhyh-0-bea26cc6694c319c2a27a490da70e652)
(5.139)
仿照4.3.4节中的理论性能分析可知,该估计值是渐近无偏估计值,并且其均方误差矩阵为
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_510.jpg?sign=1739287708-KGhga4ESP7fHIGHUAGY05ukUY0AsGfxx-0-2bee743a3588383502b0b94e3b2dd593)
(5.140)
需要指出的是,若不利用向量所满足的二次等式约束,则可能会影响最终的定位精度。下面不妨比较“未利用二次等式约束(由式(5.139)给出的结果)”和“利用二次等式约束(由图5.10中的方法给出的结果)”这两种处理方式的定位精度。仿真参数基本同图5.15和图5.16,只是固定标准差
,改变参数
的数值,图5.17给出了辐射源位置估计均方根误差随着参数
的变化曲线;图5.18给出了辐射源定位成功概率随着参数
的变化曲线(图中的理论值是根据式(3.29)和式(3.36)计算得出的,其中
m)。
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_517.jpg?sign=1739287708-5cnb7IjX7vVoxWyDuc08HpLlO5hrW1ZR-0-4ec20a1145bbb5cb5e4f0b99b7c3fcb9)
图5.17 辐射源位置估计均方根误差随着参数k的变化曲线
![img](https://epubservercos.yuewen.com/B0258D/19391577301344706/epubprivate/OEBPS/Images/txt007_518.jpg?sign=1739287708-mTub3DWo9p9c4xeKcOXTkVnuWjvO26JT-0-0d5896053c65ed51f018155f78121350)
图5.18 辐射源定位成功概率随着参数k的变化曲线
从图5.17和图5.18中可以看出,若未利用向量所满足的二次等式约束,则最终的定位误差确实会有所增加。
[1]若信号传播速度已知,则距离差与到达时间差是可以相互转化的。
[2]这里使用下角标“tdoa”来表征所采用的定位观测量。
[3]本节中的数学符号大多使用上角标“(1)”,这是为了突出其对应于第1种定位方法。
[4]也不会实质影响估计值的统计性能。
[5]由式(5.17)中的第2式可知,向量中的第4个分量一定是负数。
[6]这里使用下角标“tdoa”来表征此克拉美罗界是基于TDOA观测量推导出来的。
[8]参数k越大,辐射源与传感器之间的距离越远。
[9]本节中的数学符号大多使用上角标“(2)”,这是为了突出其是对应于第2种定位方法。
[10]加权矩阵中的扰动误差也不会实质影响估计值
的统计性能。