![高等数学(上册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/472/32164472/b_32164472.jpg)
1.6 极限存在准则和两个重要极限
本节我们介绍极限存在的两个准则——夹逼准则和单调有界收敛准则,并由此得到两个重要极限.
定理1.6.1(夹逼准则) 设数列{xn},{yn},{zn}满足以下条件:
(1)从某项起,即∃n0∈N+,当n>n0时,有yn≤xn≤zn;
(2),
则数列{xn}的极限存在,且.
证 由则根据数列极限的定义,对∀ε>0,存在正整数N1,当n>N1时,总有
|yn-A|<ε,
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-042-10.jpg?sign=1739693372-RMTg3XIubhlP2uErUtL7IP26TYJJMzKv-0-8a9bba4c4078ddc4a0a9016acdc511f5)
同理,由则对上述ε,存在正整数N2,当n>N2时,总有
|zn-A|<ε,
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-042-11.jpg?sign=1739693372-YhtrNZNoFAW0u6XDLOblhm7fhxZyqJCN-0-3db39f18af3f357b8d793c5b8f2bd2dd)
取N=max{N0,N1,N2},当时,条件(1)和式(1.6.1)、式(1.6.2)同时成立,则
A-ε≤yn≤xn≤zn≤A+ε,
所以数列{xn}的极限存在,且.
夹逼准则对于函数极限也成立,即设在自变量x的同一个极限过程下,f(x),g(x)和h(x)满足以下条件:
(1)g(x)≤f(x)≤h(x);(2)limg(x)=A,lim h(x)=A,则lim f(x)=A.
例1.6.1 求.
解 由于,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-02.jpg?sign=1739693372-JWcPLljz29DeAhaCNsHrAjWZjkRf9bN7-0-a9c374b60006e679adf41bd30f67bc84)
而
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-03.jpg?sign=1739693372-0DD090OBsmxuy7VnlKQx5H7vmSqJDB4p-0-cbf6fd56d69a4e0f9080e3c7042fa19f)
由夹逼准则知
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-04.jpg?sign=1739693372-GSOGGQdQleF5AH5mtwESE4RWS32CsNGR-0-74c3862559d0d77535643e2a69065e2c)
作为夹逼准则的应用,下面介绍第一重要极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-05.jpg?sign=1739693372-hKVLCP1uFeL4uXRETeI9ht5Z7X4vMWZe-0-9c57d9c0bda7f0610fd33f55a0de20f7)
证 首先注意到,函数对于一切x≠0都有定义. 作单位圆如图1-6-1,设∠AOB=x(弧度),过A作圆的切线与OB的延长线交于P,过B作OA的垂线交OA于C,从图1-6-1容易看出,△OAB的面积<扇形△OAB的面积<△OAP的面积,而
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-07.jpg?sign=1739693372-hQTK1yuHG3hQmnUjTXYFOXPEb3NnrJOx-0-0a32368e51917bf45e787762595c3b1c)
故有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-08.jpg?sign=1739693372-0rQ8foAjKgm0KpCWDS5446sebfS8wNmO-0-f57698c003d0764927ed89a691571fa2)
当时,上式各项同除以
,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-11.jpg?sign=1739693372-CUD3K5pDhgxhxZQtdP8V5JMemh8F0cE5-0-2c5943f6206c34cf788ea82d43558d56)
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-12.jpg?sign=1739693372-EaaBwRMFRbuycmxFQB0Pgy9bxEHdb282-0-7ff9d70144098ca7e9cb3e0326e82877)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-13.jpg?sign=1739693372-lRkxLYdYyZXwHK8UriUyzEUsNjkSbSdw-0-de126955ca03036e8e7e589199009888)
图1-6-1
当时,由于cos(-x)=cos x,
,式(1.6.3)也成立.
因此,由和夹逼准则,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-043-17.jpg?sign=1739693372-8UcxKjJECsnB4o9YBNTI8s2ZEsQxqlRh-0-30047f2600df6d914a0a09157ee5346f)
例1.6.2 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-02.jpg?sign=1739693372-lcs26NCsl557mYkUJNyEMqxO4OE5csV9-0-3c5335de9419a202219cc33dc40c648f)
令t=kx,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-03.jpg?sign=1739693372-aRZ771o2ry85GcRJX4dTeu4XOOQKsAJd-0-b0ba1b192d0ce139055aa75cc9169fd2)
例1.6.3 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-05.jpg?sign=1739693372-1KI1j7g8mV4EZF2qZfXizQkJh3sa415q-0-9e44156be761db0d95c1a43f82d66a49)
例1.6.4 计算极限.
解 由于
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-08.jpg?sign=1739693372-7cpIqixYoZESruheKX3K8tgmEw9xzmzY-0-6be786cbf14995db304ad73f1cd5e642)
令,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-09.jpg?sign=1739693372-S0JpCVQ96THyqI8vkNhQA7fgXGuxYJrM-0-feb3ead25c61b2d0c6fbc2113b1eb43e)
一般地,设α(x)是自变量x某一变化过程中的无穷小,即lim α(x)=0,且α(x)≠0,则在同一极限过程中,
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-10.jpg?sign=1739693372-7IyeZPsHggHo4XoTckniWxB5N8MMKLY7-0-351d86b7a76a79f6a9e755b1824be9ae)
例1.6.5 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-044-12.jpg?sign=1739693372-cAJSBrpuH3kewFhATfv1KJKY0BggZUQ9-0-124cb54cacb46fc6c2a5916bff5427b6)
定理1.6.2(单调有界收敛准则) 单调有界的数列必收敛. 即给定数列{xn},若有
x1≤x2≤…≤xn≤…(单调增加)
或者
x1≥x2≥…≥xn≥…(单调减少),
且对一切n,有|xn|≤M(有界),则数列{xn}必收敛.
由定理1.2.2知:收敛的数列必有界,但有界的数列未必收敛. 现在单调有界收敛准则表明:如果数列不仅收敛,而且是单调的,那么该数列一定收敛.
单调有界收敛准则的几何解释:单调增加数列的点只可能向右一个方向移动,或者无限向右移动,或者无限趋近于某一个定点A,而对有界数列只可能发生后一种情况. 单调减少数列情况类似.
使用单调有界收敛准则时,我们通常考虑下列两种特殊情况.
推论1.6.1 如果数列{xn}单调增加且有上界,则{xn}必收敛.
推论1.6.2 如果数列{xn}单调减少且有下界,则{xn}必收敛.
例1.6.6 设数列{xn}满足存在,并求其极限.
解 由题意知0≤xn≤1,n=1,2,…,因此数列{xn}为有界数列. 又
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-02.jpg?sign=1739693372-xDedg1kxkDMl0fy9STcRqlrQk6GzSn9q-0-1ad04e875125de68767c2a632544125a)
即
xn+1≤xn,n=1,2,…,
所以数列{xn}为单调减少,由推论1.6.2知存在.
设,在等式
两边同时令n→∞,并注意到
从而有
A=A2,
解得A=0,A=1. 又因为0≤A≤x1<1所以A=1舍去,故A=0.
下面介绍第二重要极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-07.jpg?sign=1739693372-6FairTeAKgZZU4vTLSiileYwQE2Y75bz-0-1ab382c38ea979d5fc73d23fddad5cb1)
先讨论数列极限的情形:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-08.jpg?sign=1739693372-jdlPZN5o87wELp5zGG6ICSJDkkXdzkPb-0-0609032e385e90d071f99c4af3d5c853)
我们只需要证明数列是单调增加且有上界的即可.
结论1.1.3已经给出了下列不等式:对任意n个正数a1,a2,…,an时,有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-10.jpg?sign=1739693372-lZQsMsnPb6LvArNOL1FZdTeTwcUbfzBT-0-43bb590c20930f91867b8826d8566583)
且等式成立当且仅当a1,a2,…,an全部相等. 上式即为
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-11.jpg?sign=1739693372-mPm8HlvhEtgEf4ue49vhg5EFuD76JOuM-0-ffababbc088d8779ba0d8d3b93872a3a)
(单调性)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-12.jpg?sign=1739693372-bKwyATDDqvuTsSY9P65DIAPTj0WvtZXw-0-ebf32ad5b998c1cee9ddfcab8df5faa3)
由式(1.6.4)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-045-13.jpg?sign=1739693372-u0DagcPiZXq5DVPVAsOv2P9j76ubksl8-0-c32010e94e2dc1949aaaceff2fed1f54)
所以数列是单调增加的.
(有界性)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-01.jpg?sign=1739693372-FoGAPVRShW1aumV46Dxp2CzSB0kcXVzv-0-04ee9906cd2cafe8b7fdeb75ac717566)
即得
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-02.jpg?sign=1739693372-W3KvBuC7G0lZMjWUalLm7Xz6T0i9Sl9R-0-03c45b21406a6f6cc9399fa4100d2d65)
由单调性知
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-03.jpg?sign=1739693372-cXisz8jU0aertZmrpdPTT20A3pcGTyHx-0-d5c5638b7f3f4331fc891b612da08835)
所以对任意的n均有
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-04.jpg?sign=1739693372-dbQwc8UWWFoC49r9umVKTPLZbjwX1Uik-0-6ab610ba4e3790d02d044ea883ab052c)
即数列有上界.
由推论1.6.1,数列收敛,即数列极限存在,用字母e来表示. 可以证明e是一个无理数,其值为
e=2.718281828459045….
即
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-07.jpg?sign=1739693372-AO3viM3XZvITLQPaLdHnTpumjY2C5gvc-0-cfbe5e789c75197fcfcc380431cc7cff)
进一步可以通过夹逼准则及变量代换证明
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-08.jpg?sign=1739693372-ADXIYS0bnvmmJ778PrRBawhXwzBf0vd1-0-88cf1c98982082a53c840a44efd9b1ab)
指数函数y=ex以及自然对数y=ln x中的底e即为这个常数.
若在,则当x→∞时t→0,故
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-10.jpg?sign=1739693372-JWz2wdfVv8LN03X256xorHbnY4UimXu5-0-e5d17c335b345dce26f07d8322ad363b)
所以,第二重要极限也可以变形为
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-046-11.jpg?sign=1739693372-DZsXLQPyewKTzghSpU31ivWzkxdiNPXc-0-d798c3352c2ba3957d4e8b1789805498)
例1.6.7 计算极限.
解 令t=3x,则当x→0时,t→0,所以
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-01.jpg?sign=1739693372-INkAu2ncyjf3xgfK6H1uR0nmcLGsuOBW-0-551e91f9e536800ba774fd5431898bd3)
例1.6.8 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-03.jpg?sign=1739693372-kjHB5QN53qfl1iWYn0wMui0stZ8BdTgj-0-419c8940e46074ba50bae56780df5827)
例1.6.9 计算极限.
解 令,当x→∞时,t→∞,则
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-06.jpg?sign=1739693372-rhru45r03BCuCM1VddoAwDDdxgKq9RYG-0-6d2d378ecc11078a875019893fa929bd)
一般地,设α(x)是自变量x某一变化过程中的无穷小,即lim α(x)=0,则
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-07.jpg?sign=1739693372-xYJH3BZ70PHSrDW1AA0TkQhAQcwAEd6a-0-7cd949129a59d862269aecd0177f7331)
注意第二类重要极限的特点:函数是幂指函数,底数为两项之和,其中第一项为1,第二项的极限为0,指数与第二项互为倒数. 这样的极限值都是e.
例1.6.9的解题过程也可以简写成
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-08.jpg?sign=1739693372-7bCvaCRbqNcnngKe1LH8OkJyhmahClAd-0-689703e51d6d8bca641c91fc997ecaaf)
例1.6.10 计算极限.
解
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-10.jpg?sign=1739693372-m98dzYwxOuhd4TN5YK1p3JShjnv5uNKX-0-e878ae6df209fb397e7cea7f1956d4a8)
习题1-6
1. 利用极限存在的准则证明:
(1);
(2)数列的极限存在.
2. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-047-13.jpg?sign=1739693372-9ZFHEO7cADqldRGuN0LruBZjF2v6YdYn-0-bc7299cbc72d80012fb40c79b3ce306b)
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-01.jpg?sign=1739693372-ljNcMae7K90wLkluNqYxdo3IluWd1QUk-0-7695b25e7ab050d510a2df654d6110e2)
3. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-02.jpg?sign=1739693372-H0EEgmS1FbpREABxn9YVKu4IQVQQ9p1J-0-3222c516b5730ff76c1d5976f12ffb4a)
4. 求下列极限:
![0](https://epubservercos.yuewen.com/59D64A/17404909404239306/epubprivate/OEBPS/Images/42597-00-048-03.jpg?sign=1739693372-zVEVYcdKgwkCUOsMI6LmkwcbzFO0AK4z-0-41b7e7d05a4a17079cceb3fda3cf94d3)