![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 矩阵的加法、乘法和矩阵的转置
1. 矩阵的加法
设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8145.jpg?sign=1739283882-DdlpVJQFYBt6Sq448kukVgs63IxWKoiH-0-d8003e7b0bdf0ab7b6983b05d8202d6a)
是两个s×n矩阵,则s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8146.jpg?sign=1739283882-WUpI8R3BLDuU8zyEuTB0kKzaDdVClp0d-0-146832c647a4fc363352818ffd6b6633)
称为A和B的和,记作
C=A+B
从定义可以看出:两个矩阵必须在行数与列数分别相同的情况下才能相加。
【手工计算例5】
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P24_8149.jpg?sign=1739283882-d1C16wZwYD8mNINDiflf9CdVaGbYu5nG-0-b4b60bc2bc63c536559611df2cdd8451)
2. 矩阵的乘法
定义矩阵的乘法如下:
设A是一个s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8151.jpg?sign=1739283882-P9YwUcV79ejwcv0RqUQyMYdPNLiCO5zB-0-c2cc2212441e0be6e4c62b49798a0339)
B是一个n×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8152.jpg?sign=1739283882-XuEr0GJUa7KhoRrJfbh7yZkGOZXcSVmj-0-e36446a7c3006e95f494b5c589dbffb1)
作s×m矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8153.jpg?sign=1739283882-IqKnBQE3q9U7ic65AqC77qnz4Wl8GjPR-0-6303d6e9df58e5f1c5d7c4e4d6d814a4)
其中,
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8154.jpg?sign=1739283882-lvq0rzthwSG5uf5FaTfmTLuviRYfREBm-0-9301e705a455b34aed1f7a5adc5909fc)
矩阵C称为矩阵A与B的乘积,记为
C=AB
注意:在矩阵乘积的定义中,要求第1个矩阵的列数必须等于第2个矩阵的行数。
【手工计算例6】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8157.jpg?sign=1739283882-gbTUZWaGMUi4pqEsw0mMnOsUt8WVDcdv-0-b2521c0fbd09a85576f82129a256e99f)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P25_8158.jpg?sign=1739283882-BgoNF1EZRVaofLVD0sfivmWzkd1a7t49-0-25f1dcc2be811bce270a4dacf25ae973)
矩阵的乘法与数的乘法有一个重要区别:就是矩阵的乘法不满足交换律,也就是说,矩阵的乘积AB与BA不一定相等。看下面的例子。
【手工计算例7】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8161.jpg?sign=1739283882-9Mbh7YeoHFQXn3sFNVF7F6t2Y2j1SnoH-0-1e318ab990815e38e0bfec4b0e4d18c8)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8162.jpg?sign=1739283882-ieEUOvb6YXJ3SabiCevZPF6UvvbYaN2B-0-afc9cf3cb8605552d91a107dfecf9ca7)
可见,在本例中,AB和BA完全不同。
3. 矩阵的转置
把一个矩阵的行列互换,所得到的矩阵称为这个矩阵的转置。
设A是一个s×n矩阵:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8165.jpg?sign=1739283882-e31XQJ0qux1a5bGHR1rSMo2YwQVEFKfi-0-119360a8f100b2248ba7fb939df17221)
s×n矩阵
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8167.jpg?sign=1739283882-NycpcoEKHUpkVndaoZJHuCe2Y7S1KEAD-0-1e434f485ee0e823c139d375dcf3d0de)
称为A的转置矩阵,记作A′。
【手工计算例8】 设
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8168.jpg?sign=1739283882-XBudF3s7FSUMDseFPMWcLizACRgXtXHq-0-1932fb508b182d266564d0bb7d85dfdf)
则
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P26_8169.jpg?sign=1739283882-DF7IiVDn3lMmxH78rJXgK1RtPLh92q1Q-0-9685c0e6038aa03611f3c839870e995f)