![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
上QQ阅读APP看书,第一时间看更新
2.2.2 反函数的求导法则
已经解决了对数函数和三角函数的求导公式,下面需要解决它们的反函数指数函数和反三角函数的求导,为此给出如下定理.
定理2 如果函数x=φ(y)在区间I内单调、可导,且φ(y)′≠0,则其反函数y=f(x)在相应区间内也可导,且
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058002.jpg?sign=1739321813-pwQUIcbDXeFjP0CbIfpcAym7M2WwVkk6-0-32d81fbb4bb3a7f05dda0bc613b41717)
证明由于互为反函数x=φ(y)与y=f(x)在各自相应的区间内单调性是一致的,所以,当Δx≠0时,Δy≠0,则
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058003.jpg?sign=1739321813-Vwyb1zEyVJ5FI3YTaNPH2zqrSCYLJ0sg-0-b2ed3bc50c6fb699134904f5f265fbae)
函数x=φ(y)在区间I内可导且φ(y)′≠0,则函数x=φ(y)在区间I内必连续,则其反函数y=f(x)在相应区间内也连续,即当Δx→0时,Δy→0,所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058004.jpg?sign=1739321813-ae0hbbyTm9rC4v8OTfwYDmqdIC0TNF93-0-68a027a44e797dee2614323d020b184d)
即
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058005.jpg?sign=1739321813-xYGZKiX6RNDJELZlGXS9l8BzARzs8bVY-0-60279e44b523327061cb51434715aeb7)
简言之,某函数反函数的导数等于该函数导数的倒数.
例6 求函数y=arcsinx和y=arctanx的导数.
解 因为y=arcsinx(-1<x<1)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00058008.jpg?sign=1739321813-W2l4Pl8H0Wbrsp6KL1qcwJrJb0fwXdOZ-0-7d537251d11d9fc97e092be78c2068ba)
因为y=arctanx(-∞<x<+∞)的反函数为,它们在各自的定义区间内单调、可导,且有
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059001.jpg?sign=1739321813-GxJ7jDJ9kw0eU6DNMDhtRFECzakilIJL-0-abd1d4e44b594160874224a1da2c0f71)
所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059002.jpg?sign=1739321813-O74UFOt86zTyoBh0Axxt5lVK1DeEcElQ-0-a009938354a889fdd5a4bfc6293098f8)
同理可推得
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059003.jpg?sign=1739321813-Qnz5iD8qjZpz0cK51oOJaxXtjHhWdYnA-0-5e1810bef04e825c5cba3fb6f191c527)
例7 求函数的导数.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00059005.jpg?sign=1739321813-w2sCpq7cP5Nk9mwalB1LYcEOINniGUeD-0-0eb71bb68c8963a6279609be55c2f9bf)