![高等数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/582/26179582/b_26179582.jpg)
1.5.2 无穷小量的比较
有限个无穷小的和、差、积仍然是无穷小,那么两个无穷小的商是否仍是无穷小?
考察当x→0时,无穷小x,x2,2x2,x3的比会出现哪几种情况.通过比较
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00038001.jpg?sign=1739320427-1hH3YkCOdNcpvAaeEogSOPAY7kpX0KqC-0-d5958eb758434e6dc00885dbda2ce4ee)
发现比的极限不同,反映了无穷小趋于零的速度有快有慢.为了比较无穷小趋于零的速度快慢,给出如下无穷小阶的概念.
定义2 设limα(x)=0,limβ(x)=0且α(x)≠0(在自变量同一趋近过程中).
(1)如果,则称β是比α高阶的无穷小,记作β=ο(α);
(2)如果,则称β是比α低阶的无穷小;
(3)如果,则称β与α是同阶无穷小,特别地,
时,称β与α是等价无穷小,记作α~β.
例3 比较下列无穷小的阶.
(1)当x→0时,sinx与tanx; (2)当x→1时,(x-1)2与x2-1.
解 (1)因为,所以当x→0时,sinx与tanx是等价无穷小.
(2)因为,所以当x→1时,(x-1)2是比x2-1高阶的无穷小,记作(x-1)2=ο(x2-1).
定理2 在自变量同一趋近过程中,
(1)如果α~X,β~Y,且存在,则
;
(2)如果α~X,β~Y,且存在,则
;
(3)如果α~β,且lim(β·Z)存在,则lim(α·Z)=lim(β·Z).
定理表明,在乘积或商的极限中等价无穷小因子可以互相替代.常见的等价无穷小有
当x→0时,sinx~x,tanx~x,1-cosx~,ln(1+x)~x,ex-1~x,arcsinx~x,arctanx~x,
.
例4 利用等价无穷小的替换求下列极限.
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00038014.jpg?sign=1739320427-Enbh9EMjHQsVB2p2ezAxotM4MsRzjGi8-0-5d9fb22f4221154eabdb172925b76e5e)
解 (1)因为当x→0时,tan2x~2x,sin5x~5x,所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00038015.jpg?sign=1739320427-qnxYPPyhAm9jsQPNrwXDFq5XdlEQDBuZ-0-0d457642d6abf1dd7179c8de5dd5ce36)
(2)因为当x→1时,sin(x-1)~x-1,lnx=ln[1+(x-1)]~x-1,所以
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00039001.jpg?sign=1739320427-kDvjcbhqQOlmmw1PqNbe2eLoqQYcy5dM-0-eee84df8094bbd70e54d804c1dcf8d2e)
(3)因为tanx-sinx=tanx(1-cosx),当x→0时,tanx~x,1-cosx~
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00039002.jpg?sign=1739320427-JUwENKmW6G0J8esJvtPTK6eFyVyvTi2e-0-44613218252a366776cb84777f45031e)
,ex-1~x,所以
发现:在计算上面例子中极限(3)时,容易出现分子tanx-sinx直接等价成x-x=0,以至于造成错误解法:
![](https://epubservercos.yuewen.com/6E8314/14615890804593006/epubprivate/OEBPS/Images/img00039004.jpg?sign=1739320427-KC8XJMDQR1U3hE05KwKLfxDfdiM1LyID-0-8d04b0f0a21b16c28093dd246e722c3b)