![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
上QQ阅读APP看书,第一时间看更新
§2.2 求导法则与导数公式
2.2.1 函数的和、差、积、商的求导法则
定理1 设函数u=u(x)及v=v(x)在点x处可导,C为常数,则
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077001.jpg?sign=1739945926-Eff9jj4zw58CuOCrJBsXQmvyF91hyDAd-0-d80230ee407da44ef74c813859712ead)
下面只证明(2),其余留给读者作为练习.
证 由于可导必连续,有
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077002.jpg?sign=1739945926-grwK3ZSkO0NzL9xEyE2gyjXbS2Xe2FAY-0-81c6a130fecb5e4f714606aeb0d97729)
例1 求函数y=tanx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077003.jpg?sign=1739945926-EjdMXo6UojxeCBhDXD8UPV68GzIAKXFq-0-476a1133f97052f8f0ac55ce90ae8630)
即 (tanx)′=sec2x.
类似可得
(cotx)′=-csc2x.
例2 求函数y=secx的导数.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00077004.jpg?sign=1739945926-73zaw64CukiQ1FGqs3oflErnrVesheYa-0-9a9fffcc41a3e2b03ce5dca705ba1057)
即 (secx)′=secxtanx.
类似可得
(cscx)′=-cscxcotx.
例3 设y=3x3+5x2-4x+1,求y′.
解 y′=3(x3)′+5(x2)′-4(x)′+1′=9x2+10x-4.
例4 设,求
解 f′(x)=3x2-3(excosx)′=3x2-3(excosx-exsinx)
=3x2-3ex(cosx-sinx).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078001.jpg?sign=1739945926-DfhREAGSxtBtTX2aipp8BWAb6JWGlQWA-0-589f99a093a0d74730f0b6ec15082424)
例5 设f(x)=x2lnx,求f′(x).
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00078002.jpg?sign=1739945926-6plh3aACecWKOottHTC2871jtHN5fHfc-0-3e244314d0f5d71dcdf48d119c070889)