![高等数学·上册(第2版)](https://wfqqreader-1252317822.image.myqcloud.com/cover/227/26179227/b_26179227.jpg)
习题1
1.求下列函数的定义域:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00062002.jpg?sign=1739945546-hZtP0vRD784hrRJBnoosjks1ZAPYyyIo-0-eba5f2630d7c7bb82b834432a914d53d)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063001.jpg?sign=1739945546-AXWykwNQokxxK24vgTJK9IDvm8lCkNPW-0-574af4f02fd7b69ee07fda1afbeaf6b6)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063002.jpg?sign=1739945546-5H2n34K7ftVqyIgdCUF4pBJWOhbpSJne-0-90328d5b6ef29c8e9a3a79898b240ffb)
2.判断下列每对函数是否是相同的函数,并说明原因.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063003.jpg?sign=1739945546-ygGekNiy6FNmFf0f8FlmFRBGX8UW3ZKS-0-3f3cb7b8d988d8c5f68f3f47f5d2a02b)
(3)y=2lgx与y=lgx2; (4)y=sin2x+cos2x与y=1;
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063004.jpg?sign=1739945546-4pxGILALuOJ5YvE7Fx1T189dWdUGSvjw-0-e7a4485cc30d32ce5e3f971e2f8906e6)
3.指出下列函数的复合过程:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063005.jpg?sign=1739945546-iRKGuQtKV1a17bWKGguqt42OvUaf5MpS-0-be73aa0bc7a5528ca253908e77e561d0)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063006.jpg?sign=1739945546-5Cm3oVGfeAHBmwbOKQTPOuy1BnFcxfe2-0-f5ea3c1235b54c463bf922670d817b59)
(5)y=xsinxlnx; (6)y=lnsin2x.
4.判断下列数列的敛散性,若收敛,求其极限.
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063009.jpg?sign=1739945546-kPcLwWDonPqtMgiwzxV7QXFIO5zsH1G6-0-58634758540d664c84465b9c65abaf76)
5.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00063007.jpg?sign=1739945546-ZV0xmGupXy9GIaSzGDenHGCcviKNSQpl-0-8991153a1738e5887600fb1e74733fb1)
6.已知,求常数a,b.
7.设
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064001.jpg?sign=1739945546-uxI9mO0mBYRH1iKFL2nfpCj0asEV815i-0-dc3f1843b924e24fca05d6ddf67353de)
求:(1) ;
(2)f(g(x)),.
8.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064004.jpg?sign=1739945546-rfchO9z1piXqq0gBO1zH4TBYLUlyoWuH-0-3cb587e8cf722920a4cc6b604967bd29)
9.设a1=10,,试证数列{an}极限存在,并求此极限.
10.证明
11.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064007.jpg?sign=1739945546-YvcIWzr4fRV9Wb4UkNK3NV3qLTqbRxlG-0-1e035e0bced08c7ad36a9bd1acaedff0)
讨论函数f(x)在点x=0处极限是否存在.
12.证明无穷小的等价关系具有下列性质:
(1)α~α(自反性);
(2)若α~β,则β~α(对称性);
(3)若α~β,β~γ,则α~γ(传递性).
13.求下列极限:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00064008.jpg?sign=1739945546-8s0lIm8f6YItZqZBQ1OBIYIbEqexWfe9-0-39f875ee25d8fa9e59ecdadeaa458551)
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065001.jpg?sign=1739945546-pTyLtbnFrQLZ3AsfNe30r02dWe7pvMiq-0-17c16e117f758cdb17129cc851d8a66c)
14.当x→0时,(tanx-sinx)与xk是同阶无穷小,求k值.
15.求函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065002.jpg?sign=1739945546-LNY1oRP6M6cESIoCygngt2Ob7xCkC1vZ-0-6c2ab28acd1e322f3a70db425a442c9f)
在分段点处的极限.
16.求
17.确定常数a,b,使.
18.已知为有限数l,求常数a,l.
19.已知
20.设.
21.已知,求常数a.
22.求下列函数的间断点,并判断其类型:
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00065009.jpg?sign=1739945546-n9NSTjFcvzS8rT2YwJargUSZxEj6IJCc-0-52d0599c618a3a271f5d79d0e3f1a85c)
23.设函数,求函数f(x)的间断点,并指出类型.
24.讨论函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066002.jpg?sign=1739945546-zvEPMiOgjIEM41obBF91W7tDKqWPCq4x-0-e098fdda210c74da8a099376785c285f)
在点x=0处的连续性.
25.设函数
![](https://epubservercos.yuewen.com/578B36/14615859905722306/epubprivate/OEBPS/Images/img00066003.jpg?sign=1739945546-b1T89wOo7bCTPYm30F7gXToovb0u7uCL-0-0a162773b3359386555c1e80fe50e6f6)
确定常数a,b,使得f(x)在点x=0处连续.
26.(1)设,证明
,并问其逆是否成立?
(2)设f(x)在点x0连续,证明|f(x)|在点x0连续,并问其逆是否成立?
27.求函数,并确定常数a,b使函数f(x)在点x=-1,与x=1处连续.
28.证明方程x·2x=1至少有一个小于1的正根.
29.设函数f(x)在[a,b]上连续,且f(a)>a,f(b)<b,试证在(a,b)内至少存在一点ξ,使得f(ξ)=ξ.
30.设函数f(x)在[a,b]上连续,且a<c<d<b,证明:
(1)存在一个ξ∈(a,b),使得f(c)+f(d)=2f(ξ);
(2)存在一个ξ∈(a,b),使得mf(c)+nf(d)=(m+n)f(ξ).
31.求证:方程ex+e-x=4+cosx在(-∞,+∞)内恰有两个根.