
会员
区块链:看得见的信任
叶春晓更新时间:2021-12-30 13:29:37
最新章节:参考文献开会员,本书免费读 >
作者借助生活化的语言和事例,以比特币为突破口,为读者普及、解析了区块链发展热潮、区块链技术的核心特点及创新性、区块链技术的利弊、区块链技术的应用场景及未来潜力等知识。作者以贴近生活的案例展现了加密数字货币、加密算法、隐私保护、智能合约等热点问题的来龙去脉、背景、原理、优缺点、国内外发展状况及应用趋势,并通过区块链技术展现了智能时代信任与安全问题的广度和深度。
品牌:重庆大学
上架时间:2019-08-01 00:00:00
出版社:重庆大学出版社
本书数字版权由重庆大学提供,并由其授权上海阅文信息技术有限公司制作发行
区块链:看得见的信任最新章节
查看全部叶春晓
主页
最新上架
- 会员
数据要素五论:信息、权属、价值、安全、交易
本书从与数据要素关系最密切的信息、权属、价值、安全、交易等五个维度出发,汇聚不同学科背景的既有文献,整合现有观点,对数据要素的多维特性进行探讨,以丰富人们对数据要素的认知,凝聚共识,澄清数字时代的发展与治理迷思,为未来的相关创新提供起点。计算机14.5万字 - 会员
Python数据分析、挖掘与可视化从入门到精通
本书分为4篇,第1篇是基础入门篇,主要介绍数据分析与挖掘的基本概念及Python语言的数据分析基础;第2篇是数据分析篇,主要介绍常用的数据分析方法;第3篇是数据挖掘篇,主要介绍常用的数据挖掘方法;第4篇是实战应用篇,介绍两个完整的数据分析与挖掘案例。计算机10.9万字 - 会员
网络科学与网络大数据结构挖掘
《网络科学与网络大数据结构挖掘》作为网络科学的工具性图书共分两大模块:第一模块是基础理论,包括网络基本概念、网络拓扑性质、复杂网络社团挖掘等内容,旨在让读者熟悉一些基本的建模方法和分析技巧。第二模块为应用模块,包括复杂网络在几个代表性领域中的应用研究分析及案例剖析等。全书没有过多地数学和物理推导,而是更为关注网络科学的思维习惯和研究方式,兼具理论性、资料性和实践性。可用于各学科领域的教学及研究人员计算机0字 - 会员
算法设计与分析
为了便于读者进行系统学习、分类整理知识点及遇到问题时能够快速找到求解的方法,本书按照算法策略进行划分,每一章都引入了若干个经典问题。通过问题的分析、计算模型的建立、算法的设计与描述、算法的分析来深入解读每一种算法策略所能解决的问题范畴及方法。全书共分9章,内容包括:算法设计基础、算法效率分析基础、迭代法、蛮力法、分治策略、回溯与分支界限、贪心算法、动态规划、随机算法。本书非常注重教材的可读性和实用计算机9.4万字 - 会员
Python数据分析与挖掘实战(第3版)
本书是Python数据分析与挖掘领域的公认的事实标准,前两版销售超过15万册,被国内100余所院校采用为教材,同时也被广大数据科学工作者奉为经典。本书以真实项目案例为驱动,以真实的行业应用为依托,帮助读者快速掌握数据分析与挖掘的相关技术、流程与方法。本书精选了7个经典实战案例,涵盖了房地产、零售、互联网等多个领域,将Python编程知识、数据分析与挖掘知识和行业知识融合,让读者在实践中快速地掌握针计算机14万字 - 会员
大数据SQL优化:原理与实践
这是一本站在一线开发人员的视角,从SQL的本质出发,采用理论与实践相结合、案例与分析相结合、作者经验与一线需求相结合的方式,深度解读大数据SQL优化核心技术和解决方案的工具书。本书主要面向大数据初中级技术人员,期望帮大家深度理解大数据SQL优化原理,掌握SQL优化的落地实践方法,从而真正“玩转”大数据SQL优化技术,根据实际问题和需求设计出有针对性的提升SQL性能的解决方案。计算机14万字 - 会员
Power BI商业数据分析完全自学教程
本书共5篇,分为14章介绍了PowerBI的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。第1篇为基础入门篇(第1-3章),主要针对初学者,从零开始,系统且全面地讲解了PowerBI的入门知识点、基本操作及数据的输入和连接操作。第2篇为数据处理篇(第4-6章),介绍了PowerBI数据的整理操作、表格中行/列数据的管理,以及PowerBI数据的高级处理、M函数的使计算机0字 - 会员
码上行动:利用Python与ChatGPT高效搞定Excel数据分析
本书内容分3个部分共12章。第1-4章主要介绍什么是数据分析,以及Python的编程环境和基础语法知识。第5-9章主要介绍数据处理和分析的各种方法。第10-12章介绍了如何结合Python与Excel在实际工作中进行数据处理与分析操作。计算机8.5万字 - 会员
Python数据分析与挖掘实战
本书以Python数据分析与挖掘的常用技术与真实案例相结合的方式,深入浅出地介绍Python数据分析与挖掘的重要内容。本书共11章,分为基础篇(第1~5章)和实战篇(第6~11章),基础篇包括数据挖掘基础、Python数据挖掘编程基础、数据探索、数据预处理、数据挖掘算法基础等基础知识;实战篇包括6个案例,分别为信用卡高风险客户识别、餐饮企业菜品关联分析、金融服务机构资金流量预测、O2O优惠券使用预计算机13.6万字