
会员
物联网追溯系统及数据处理
曹振丽更新时间:2019-06-19 16:01:24
最新章节:内容简介开会员,本书免费读 >
数据流处理技术是目前的研究热点,掌握数据流处理技术有助于更好地研究利用大数据,挖掘出数据背后潜在的价值。本书围绕物联网追溯系统的研发及数据流处理过程中的聚类、追溯、预测与建模关键技术进行了研究。全书共6章,第1章是绪论,主要介绍物联网的概念及中国农业物联网产业化发展现状及其国内外大数据的研究现状和热点。第2~5章,主要极少数据流聚类算法、数据流追溯方法、数据流预测方法、数据流预测方法、数据流建模方法。第6章,介绍了物联网追溯系统的研发和软硬件环境配置,并对本书的主要内容进行总结和展望。
上架时间:2019-04-01 00:00:00
出版社:电子工业出版社
上海阅文信息技术有限公司已经获得合法授权,并进行制作发行
物联网追溯系统及数据处理最新章节
查看全部曹振丽
主页
同类热门书
最新上架
- 会员
人工智能治理研究
本书从技术和规制两个角度入手,以人工智能治理的法律、公共政策以及伦理规范等相关社会行为和社会关系的规则建立和运行为主要思考方向和研究进路,在梳理人工智能发展情况、欧盟及其他国家人工智能立法与政策发布现状的基础上,对人工智能治理的基础、基本路径及我国人工智能产业、政策与规制思路进行了全面和有益的探索。计算机23.9万字 - 会员
硅基物语·我是灵魂画手:一本书讲透AI绘画
本书通过实践案例操作,讲述AI绘画的生成步骤,展现了AI绘画的魔法魅力。从历史到未来,跨越百年时空;从理论到实践,讲述案例操作;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。AI绘画的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及Prompt、风格、技术细节、多模态交互、AIGC等一系列讲解。计算机5.5万字 - 会员
用ChatGPT轻松玩转机器学习与深度学习
本书共14章,主要内容包括探索性数据分析、有监督学习(线性回归、SVM、决策树等)、无监督学习(降维、聚类等),以及深度学习的基础原理和应用等。计算机18万字 - 会员
高效用DeepSeek:职场逆袭的实战指南
本书以DeepSeek应用为基础,讲解了DeepSeek在自媒体、咨询、营销、教育、翻译、职场、编程等多个领域的应用。书中通过丰富的案例和详细的指导,展示了DeepSeek如何帮助自媒体人打造“爆款”内容,如何为咨询提供高效决策支持,如何在营销中实现流量裂变,如何重塑未来学习范式,以及如何助力职场人和企业实现业务增效等。本书内容通俗易懂,案例丰富,无论是AI(ArtificialIntellig计算机8.2万字 - 会员
AIGC提示工程师精进之道
本书是一本关于AIGC提示工程师的实用指南,讲解了成为优秀AIGC提示工程师所需的技术特长和知识、沟通和协作能力、持续学习和自我提升方法等。本书分为3篇,共13章。第1篇为AIGC提示工程师基础,内容包括AI崛起下的新职业──AIGC提示工程师、设计高效提示的基本原则、常用的提示方法以及提示工程实践中的常见问题等;第2篇为提示进阶技巧,内容包括优化提示的除错过程、解决复杂问题的高级提示技巧、提升提计算机12万字 - 会员
AI时代程序员开发之道:ChatGPT让程序员插上翅膀
本书从介绍“ChatGPT第一次接触”开始,分析如何使用该工具来提高开发效率和质量。书中每一章都涵盖了ChatGPT的不同应用场景,从编写各种文档,到辅助进行需求分析和系统设计,以及数据库设计和开发高质量代码等均有讲解。还介绍了如何使用ChatGPT辅助进行系统测试以及任务管理,并对源代码底层逻辑进行了分析。计算机8.8万字 - 会员
人工智能技术
本书介绍了人工智能概览、机器学习、深度学习、人工智能主流开发框架、华为全栈全场景AI战略—EI、HiAI、昇腾,以及人工智能综合实验等内容?这是一本华为ICT学院人工智能课程培训的教材。本书是作者和华为的工作人员共同完成的,其间参阅了国内外现有教材和相关文献后编写的?全书注重理论与实践的结合,注重算法与框架的实际应用与实现方法,注重创新思维的训练与培养?本书既可作为高等院校人工智能课程的培训教材,计算机13.6万字 - 会员
DeepSeek快速上手
DeepSeek是一种生成式人工智能(AI)大模型,擅长处理复杂任务,具有训练效率高、成本低、性能强、开源等优势,吸引了全世界的关注。本书是写给DeepSeek初学者的快速上手实践指南。本书通过项目实例进行讲解,手把手地教读者如何使用DeepSeek。本书共6章,首先对DeepSeek进行概述,包括其成长路线、优势、技术原理、应用场景、应用方式等;其次讲解如何为DeepSeek写提示词,包括结构化计算机3.6万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字